Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven subgrouping of patient trajectories with chronic diseases: Evidence from low back pain (2404.10580v1)

Published 16 Apr 2024 in stat.AP, cs.LG, and stat.ME

Abstract: Clinical data informs the personalization of health care with a potential for more effective disease management. In practice, this is achieved by subgrouping, whereby clusters with similar patient characteristics are identified and then receive customized treatment plans with the goal of targeting subgroup-specific disease dynamics. In this paper, we propose a novel mixture hidden Markov model for subgrouping patient trajectories from chronic diseases. Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases (i.e., "severe", "moderate", and "mild") through tailored latent states. We demonstrate our subgrouping framework based on a longitudinal study across 847 patients with non-specific low back pain. Here, our subgrouping framework identifies 8 subgroups. Further, we show that our subgrouping framework outperforms common baselines in terms of cluster validity indices. Finally, we discuss the applicability of the model to other chronic and long-lasting diseases.

Summary

We haven't generated a summary for this paper yet.