Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Purification of Noisy Measurements and Faithful Distillation of Entanglement (2404.10538v3)

Published 16 Apr 2024 in quant-ph

Abstract: We consider entanglement distillation with noisy operations in which quantum measurements that constitute a general quantum operation are particularly noisy. We present a protocol for purifying noisy measurements and show that imperfect local operations can distill entanglement. The protocol works for arbitrary noisy measurements in general and is cost-effective and resource-efficient with single additional qubit per party to resolve the distillation of entanglement. The purification protocol is feasible with currently available quantum technologies and readily applied to entanglement applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
  2. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
  3. R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68, 022312 (2003).
  4. M. Curty, M. Lewenstein, and N. Lütkenhaus, Entanglement as a precondition for secure quantum key distribution, Phys. Rev. Lett. 92, 217903 (2004).
  5. A. Acín and N. Gisin, Quantum correlations and secret bits, Phys. Rev. Lett. 94, 020501 (2005).
  6. R. RENNER, Security of quantum key distribution, International Journal of Quantum Information 06, 1 (2008), https://doi.org/10.1142/S0219749908003256 .
  7. D. Collins and S. Popescu, Classical analog of entanglement, Phys. Rev. A 65, 032321 (2002).
  8. H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
  9. S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018), https://www.science.org/doi/pdf/10.1126/science.aam9288 .
  10. G. Vidal and J. I. Cirac, Irreversibility in asymptotic manipulations of entanglement, Phys. Rev. Lett. 86, 5803 (2001).
  11. F. G. S. L. Brandão and M. B. Plenio, A reversible theory of entanglement and its relation to the second law, Communications in Mathematical Physics 295, 829 (2010).
  12. X. Wang and R. Duan, Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose, Phys. Rev. Lett. 119, 180506 (2017).
  13. L. Lami and B. Regula, No second law of entanglement manipulation after all, Nature Physics 19, 184 (2023).
  14. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  15. H. Kwon and J. Bae, A hybrid quantum-classical approach to mitigating measurement errors in quantum algorithms, IEEE Transactions on Computers , 1 (2020).
  16. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  17. Y. S. Yordanov and C. H. W. Barnes, Implementation of a general single-qubit positive operator-valued measure on a circuit-based quantum computer, Phys. Rev. A 100, 062317 (2019).
  18. U. Maurer, Secret key agreement by public discussion from common information, IEEE Transactions on Information Theory 39, 733 (1993).
  19. U. Maurer and S. Wolf, Unconditionally secure key agreement and the intrinsic conditional information, IEEE Transactions on Information Theory 45, 499 (1999).
  20. J. Bae and A. Acín, Key distillation from quantum channels using two-way communication protocols, Phys. Rev. A 75, 012334 (2007).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com