2000 character limit reached
Purification of Noisy Measurements and Faithful Distillation of Entanglement (2404.10538v3)
Published 16 Apr 2024 in quant-ph
Abstract: We consider entanglement distillation with noisy operations in which quantum measurements that constitute a general quantum operation are particularly noisy. We present a protocol for purifying noisy measurements and show that imperfect local operations can distill entanglement. The protocol works for arbitrary noisy measurements in general and is cost-effective and resource-efficient with single additional qubit per party to resolve the distillation of entanglement. The purification protocol is feasible with currently available quantum technologies and readily applied to entanglement applications.
- O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
- R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
- R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68, 022312 (2003).
- M. Curty, M. Lewenstein, and N. Lütkenhaus, Entanglement as a precondition for secure quantum key distribution, Phys. Rev. Lett. 92, 217903 (2004).
- A. Acín and N. Gisin, Quantum correlations and secret bits, Phys. Rev. Lett. 94, 020501 (2005).
- R. RENNER, Security of quantum key distribution, International Journal of Quantum Information 06, 1 (2008), https://doi.org/10.1142/S0219749908003256 .
- D. Collins and S. Popescu, Classical analog of entanglement, Phys. Rev. A 65, 032321 (2002).
- H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
- S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018), https://www.science.org/doi/pdf/10.1126/science.aam9288 .
- G. Vidal and J. I. Cirac, Irreversibility in asymptotic manipulations of entanglement, Phys. Rev. Lett. 86, 5803 (2001).
- F. G. S. L. Brandão and M. B. Plenio, A reversible theory of entanglement and its relation to the second law, Communications in Mathematical Physics 295, 829 (2010).
- X. Wang and R. Duan, Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose, Phys. Rev. Lett. 119, 180506 (2017).
- L. Lami and B. Regula, No second law of entanglement manipulation after all, Nature Physics 19, 184 (2023).
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- H. Kwon and J. Bae, A hybrid quantum-classical approach to mitigating measurement errors in quantum algorithms, IEEE Transactions on Computers , 1 (2020).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- Y. S. Yordanov and C. H. W. Barnes, Implementation of a general single-qubit positive operator-valued measure on a circuit-based quantum computer, Phys. Rev. A 100, 062317 (2019).
- U. Maurer, Secret key agreement by public discussion from common information, IEEE Transactions on Information Theory 39, 733 (1993).
- U. Maurer and S. Wolf, Unconditionally secure key agreement and the intrinsic conditional information, IEEE Transactions on Information Theory 45, 499 (1999).
- J. Bae and A. Acín, Key distillation from quantum channels using two-way communication protocols, Phys. Rev. A 75, 012334 (2007).