Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeuroMorphix: A Novel Brain MRI Asymmetry-specific Feature Construction Approach For Seizure Recurrence Prediction (2404.10290v1)

Published 16 Apr 2024 in eess.IV and cs.CV

Abstract: Seizure recurrence is an important concern after an initial unprovoked seizure; without drug treatment, it occurs within 2 years in 40-50% of cases. The decision to treat currently relies on predictors of seizure recurrence risk that are inaccurate, resulting in unnecessary, possibly harmful, treatment in some patients and potentially preventable seizures in others. Because of the link between brain lesions and seizure recurrence, we developed a recurrence prediction tool using machine learning and clinical 3T brain MRI. We developed NeuroMorphix, a feature construction approach based on MRI brain anatomy. Each of seven NeuroMorphix features measures the absolute or relative difference between corresponding regions in each cerebral hemisphere. FreeSurfer was used to segment brain regions and to generate values for morphometric parameters (8 for each cortical region and 5 for each subcortical region). The parameters were then mapped to whole brain NeuroMorphix features, yielding a total of 91 features per subject. Features were generated for a first seizure patient cohort (n = 169) categorised into seizure recurrence and non-recurrence subgroups. State-of-the-art classification algorithms were trained and tested using NeuroMorphix features to predict seizure recurrence. Classification models using the top 5 features, ranked by sequential forward selection, demonstrated excellent performance in predicting seizure recurrence, with area under the ROC curve of 88-93%, accuracy of 83-89%, and F1 score of 83-90%. Highly ranked features aligned with structural alterations known to be associated with epilepsy. This study highlights the potential for targeted, data-driven approaches to aid clinical decision-making in brain disorders.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. N. Lawn, J. Chan, J. Lee, and J. Dunne, “Is the first seizure epilepsy—and when?,” Epilepsia, vol. 56, no. 9, pp. 1425–1431, 2015.
  2. A. T. Berg and S. Shinnar, “The risk of seizure recurrence following a first unprovoked seizure: a quantitative review,” Neurology, vol. 41, no. 7, pp. 965–965, 1991.
  3. A. Krumholz, S. Wiebe, G. S. Gronseth, D. S. Gloss, A. M. Sanchez, A. A. Kabir, A. T. Liferidge, J. P. Martello, A. M. Kanner, S. Shinnar, et al., “Evidence-based guideline: Management of an unprovoked first seizure in adults: Report of the guideline development subcommittee of the american academy of neurology and the american epilepsy society,” Neurology, vol. 84, no. 16, pp. 1705–1713, 2015.
  4. L. G. Kim, T. L. Johnson, A. G. Marson, and D. W. Chadwick, “Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the mess trial,” The Lancet Neurology, vol. 5, no. 4, pp. 317–322, 2006.
  5. É. Lemoine, D. Toffa, G. Pelletier-Mc Duff, A. Q. Xu, M. Jemel, J.-D. Tessier, F. Lesage, D. K. Nguyen, and E. Bou Assi, “Machine-learning for the prediction of one-year seizure recurrence based on routine electroencephalography,” Scientific Reports, vol. 13, no. 1, p. 12650, 2023.
  6. E. Van Diessen, H. J. Lamberink, W. M. Otte, N. Doornebal, O. F. Brouwer, F. E. Jansen, and K. P. Braun, “A prediction model to determine childhood epilepsy after 1 or more paroxysmal events,” Pediatrics, vol. 142, no. 6, 2018.
  7. B. K. Beaulieu-Jones, M. F. Villamar, P. Scordis, A. P. Bartmann, W. Ali, B. D. Wissel, E. Alsentzer, J. de Jong, A. Patra, and I. Kohane, “Predicting seizure recurrence after an initial seizure-like episode from routine clinical notes using large language models: a retrospective cohort study,” The Lancet Digital Health, vol. 5, no. 12, pp. e882–e894, 2023.
  8. J. R. Gavvala and S. U. Schuele, “New-onset seizure in adults and adolescents: a review,” Jama, vol. 316, no. 24, pp. 2657–2668, 2016.
  9. S. Wiebe, J. F. Téllez-Zenteno, and M. Shapiro, “An evidence-based approach to the first seizure,” Epilepsia, vol. 49, pp. 50–57, 2008.
  10. S. Lapalme-Remis and D. K. Nguyen, “Neuroimaging of epilepsy,” CONTINUUM: Lifelong Learning in Neurology, vol. 28, no. 2, pp. 306–338, 2022.
  11. K. Ho, N. Lawn, M. Bynevelt, J. Lee, and J. Dunne, “Neuroimaging of first-ever seizure: contribution of mri if ct is normal,” Neurology: Clinical Practice, vol. 3, no. 5, pp. 398–403, 2013.
  12. F. Semah, M.-C. Picot, C. Adam, D. Broglin, A. Arzimanoglou, B. Bazin, D. Cavalcanti, and M. Baulac, “Is the underlying cause of epilepsy a major prognostic factor for recurrence?,” Neurology, vol. 51, no. 5, pp. 1256–1262, 1998.
  13. J. Chen, Z. Huang, L. Li, L. Ren, and Y. Wang, “Histological type of focal cortical dysplasia is associated with the risk of postsurgical seizure in children and adolescents,” Therapeutics and Clinical Risk Management, pp. 877–884, 2019.
  14. R. Guerrini and W. B. Dobyns, “Malformations of cortical development: clinical features and genetic causes,” The Lancet Neurology, vol. 13, no. 7, pp. 710–726, 2014.
  15. X. Zhao, Z.-q. Zhou, Y. Xiong, K. Xu, Y. Hu, X.-l. Peng, and W.-z. Zhu, “Reduced interhemispheric white matter asymmetries in medial temporal lobe epilepsy with hippocampal sclerosis,” Frontiers in Neurology, vol. 10, p. 445225, 2019.
  16. N. Voets, B. C. Bernhardt, H. Kim, U. Yoon, and N. Bernasconi, “Increased temporolimbic cortical folding complexity in temporal lobe epilepsy,” Neurology, vol. 76, no. 2, pp. 138–144, 2011.
  17. J. J. Lin, N. Salamon, A. D. Lee, R. A. Dutton, J. A. Geaga, K. M. Hayashi, E. Luders, A. W. Toga, J. Engel Jr, and P. M. Thompson, “Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis,” Cerebral cortex, vol. 17, no. 9, pp. 2007–2018, 2007.
  18. L. Ronan, K. Murphy, N. Delanty, C. Doherty, S. Maguire, C. Scanlon, and M. Fitzsimons, “Cerebral cortical gyrification: a preliminary investigation in temporal lobe epilepsy,” Epilepsia, vol. 48, no. 2, pp. 211–219, 2007.
  19. S. Sisodiya, S. Free, J. Stevens, D. Fish, and S. Shorvon, “Widespread cerebral structural changes in patients with cortical dysgenesis and epilepsy,” Brain, vol. 118, no. 4, pp. 1039–1050, 1995.
  20. H. Seo, M. Badiei Khuzani, V. Vasudevan, C. Huang, H. Ren, R. Xiao, X. Jia, and L. Xing, “Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications,” Medical physics, vol. 47, no. 5, pp. e148–e167, 2020.
  21. S. Koitka and C. M. Friedrich, “Traditional feature engineering and deep learning approaches at medical classification task of imageclef 2016.,” in CLEF (Working Notes), pp. 304–317, Citeseer, 2016.
  22. M. A. Myszczynska, P. N. Ojamies, A. M. Lacoste, D. Neil, A. Saffari, R. Mead, G. M. Hautbergue, J. D. Holbrook, and L. Ferraiuolo, “Applications of machine learning to diagnosis and treatment of neurodegenerative diseases,” Nature Reviews Neurology, vol. 16, no. 8, pp. 440–456, 2020.
  23. D. Guo, J. Fridriksson, P. Fillmore, C. Rorden, H. Yu, K. Zheng, and S. Wang, “Automated lesion detection on mri scans using combined unsupervised and supervised methods,” BMC medical imaging, vol. 15, pp. 1–21, 2015.
  24. K. Ong, D. M. Young, S. Sulaiman, S. M. Shamsuddin, N. R. Mohd Zain, H. Hashim, K. Yuen, S. J. Sanders, W. Yu, and S. Hang, “Detection of subtle white matter lesions in mri through texture feature extraction and boundary delineation using an embedded clustering strategy,” Scientific reports, vol. 12, no. 1, p. 4433, 2022.
  25. P. Shah, D. S. Bassett, L. E. Wisse, J. A. Detre, J. M. Stein, P. A. Yushkevich, R. T. Shinohara, M. A. Elliott, S. R. Das, and K. A. Davis, “Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7t mri study,” Human brain mapping, vol. 40, no. 8, pp. 2390–2398, 2019.
  26. M. Cook, D. Fish, S. Shorvon, K. Straughan, and J. Stevens, “Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy,” Brain, vol. 115, no. 4, pp. 1001–1015, 1992.
  27. B. Fischl, “Freesurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, 2012.
  28. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.
  29. T. Wongvorachan, S. He, and O. Bulut, “A comparison of undersampling, oversampling, and smote methods for dealing with imbalanced classification in educational data mining,” Information, vol. 14, no. 1, p. 54, 2023.
  30. F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler, “Comparative study of techniques for large-scale feature selection,” in Machine intelligence and pattern recognition, vol. 16, pp. 403–413, Elsevier, 1994.
  31. E. Fix and J. L. Hodges, “Discriminatory analysis: Nonparametric discrimination: Small sample performance,” 1952.
  32. W.-Y. Loh, “Classification and regression trees,” Wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 1, no. 1, pp. 14–23, 2011.
  33. T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on document analysis and recognition, vol. 1, pp. 278–282, IEEE, 1995.
  34. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001.
  35. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016.
  36. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017.
  37. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information processing & management, vol. 45, no. 4, pp. 427–437, 2009.
  38. J. Kabat and P. Król, “Focal cortical dysplasia–review,” Polish journal of radiology, vol. 77, no. 2, p. 35, 2012.
  39. P. Widdess-Walsh, B. Diehl, and I. Najm, “Neuroimaging of focal cortical dysplasia,” Journal of Neuroimaging, vol. 16, no. 3, pp. 185–196, 2006.
  40. X. Chen, T. Qian, T. Kober, G. Zhang, Z. Ren, T. Yu, Y. Piao, N. Chen, and K. Li, “Gray-matter-specific mr imaging improves the detection of epileptogenic zones in focal cortical dysplasia: a new sequence called fluid and white matter suppression (flaws),” NeuroImage: Clinical, vol. 20, pp. 388–397, 2018.
  41. D. Taylor, M. Falconer, C. Bruton, and J. Corsellis, “Focal dysplasia of the cerebral cortex in epilepsy,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 34, no. 4, pp. 369–387, 1971.
  42. T. Rüber, B. David, and C. E. Elger, “Mri in epilepsy: clinical standard and evolution,” Current opinion in neurology, vol. 31, no. 2, pp. 223–231, 2018.
  43. N. Sinha and K. A. Davis, “Mapping epileptogenic tissues in mri-negative focal epilepsy: Can deep learning uncover hidden lesions?,” 2021.
  44. R. Heinen, W. H. Bouvy, A. M. Mendrik, M. A. Viergever, G. J. Biessels, and J. De Bresser, “Robustness of automated methods for brain volume measurements across different mri field strengths,” PloS one, vol. 11, no. 10, p. e0165719, 2016.
  45. F. Lüsebrink, A. Wollrab, and O. Speck, “Cortical thickness determination of the human brain using high resolution 3 t and 7 t mri data,” Neuroimage, vol. 70, pp. 122–131, 2013.
  46. P. M. Thompson, K. M. Hayashi, G. De Zubicaray, A. L. Janke, S. E. Rose, J. Semple, D. Herman, M. S. Hong, S. S. Dittmer, D. M. Doddrell, et al., “Dynamics of gray matter loss in alzheimer’s disease,” Journal of neuroscience, vol. 23, no. 3, pp. 994–1005, 2003.
  47. D. O. Claassen, K. E. McDonell, M. Donahue, S. Rawal, S. A. Wylie, J. S. Neimat, H. Kang, P. Hedera, D. Zald, B. Landman, et al., “Cortical asymmetry in parkinson’s disease: early susceptibility of the left hemisphere,” Brain and behavior, vol. 6, no. 12, p. e00573, 2016.
  48. D. J. Irwin, C. T. McMillan, S. X. Xie, K. Rascovsky, V. M. Van Deerlin, H. B. Coslett, R. Hamilton, G. K. Aguirre, E. B. Lee, V. M. Lee, et al., “Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia,” Brain, vol. 141, no. 1, pp. 288–301, 2018.
  49. M. S. Devine, K. Pannek, A. Coulthard, P. A. McCombe, S. E. Rose, and R. D. Henderson, “Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis,” NeuroImage: Clinical, vol. 7, pp. 782–787, 2015.
  50. S. Savio, U. Hakulinen, P. Ryymin, S. Hagman, P. Dastidar, S. Soimakallio, I. Elovaara, and H. Eskola, “Hemispheric asymmetry measured by texture analysis and diffusion tensor imaging in two multiple sclerosis subtypes,” Acta Radiologica, vol. 56, no. 7, pp. 844–851, 2015.

Summary

We haven't generated a summary for this paper yet.