Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GaitPoint+: A Gait Recognition Network Incorporating Point Cloud Analysis and Recycling (2404.10213v1)

Published 16 Apr 2024 in cs.CV

Abstract: Gait is a behavioral biometric modality that can be used to recognize individuals by the way they walk from a far distance. Most existing gait recognition approaches rely on either silhouettes or skeletons, while their joint use is underexplored. Features from silhouettes and skeletons can provide complementary information for more robust recognition against appearance changes or pose estimation errors. To exploit the benefits of both silhouette and skeleton features, we propose a new gait recognition network, referred to as the GaitPoint+. Our approach models skeleton key points as a 3D point cloud, and employs a computational complexity-conscious 3D point processing approach to extract skeleton features, which are then combined with silhouette features for improved accuracy. Since silhouette- or CNN-based methods already require considerable amount of computational resources, it is preferable that the key point learning module is faster and more lightweight. We present a detailed analysis of the utilization of every human key point after the use of traditional max-pooling, and show that while elbow and ankle points are used most commonly, many useful points are discarded by max-pooling. Thus, we present a method to recycle some of the discarded points by a Recycling Max-Pooling module, during processing of skeleton point clouds, and achieve further performance improvement. We provide a comprehensive set of experimental results showing that (i) incorporating skeleton features obtained by a point-based 3D point cloud processing approach boosts the performance of three different state-of-the-art silhouette- and CNN-based baselines; (ii) recycling the discarded points increases the accuracy further. Ablation studies are also provided to show the effectiveness and contribution of different components of our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. R. P. Wildes, “Iris recognition: an emerging biometric technology,” Proceedings of the IEEE, vol. 85, no. 9, pp. 1348–1363, 1997.
  2. A. K. Hrechak and J. A. McHugh, “Automated fingerprint recognition using structural matching,” Pattern Recognition, vol. 23, no. 8, pp. 893–904, 1990.
  3. A. Sepas-Moghaddam, F. M. Pereira, and P. L. Correia, “Face recognition: a novel multi-level taxonomy based survey,” IET Biometrics, vol. 9, no. 2, pp. 58–67, 2020.
  4. Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A comprehensive study on cross-view gait based human identification with deep cnns,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 2, pp. 209–226, 2016.
  5. M. Z. Uddin et al., “Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion,” IPSJ Trans. on Computer Vision and Applications, vol. 11, no. 1, pp. 1–18, 2019.
  6. J. Han and B. Bhanu, “Individual recognition using gait energy image,” IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 2, pp. 316–322, 2005.
  7. I. Rida, S. Almaadeed, and A. Bouridane, “Gait recognition based on modified phase-only correlation,” Signal, Image and Video Processing, vol. 10, no. 3, pp. 463–470, 2016.
  8. K. Bashir, T. Xiang, and S. Gong, “Gait recognition using gait entropy image,” 2009.
  9. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660.
  10. J. Chen, B. Kakillioglu, H. Ren, and S. Velipasalar, “Why discard if you can recycle?: A recycling max pooling module for 3d point cloud analysis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 559–567.
  11. S. Yu, D. Tan, and T. Tan, “A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 4.   IEEE, 2006, pp. 441–444.
  12. J. Chen, H. Ren, F. S. Chen, S. Velipasalar, and V. V. Phoha, “Gaitpoint: A gait recognition network based on point cloud analysis,” in 2022 IEEE International Conference on Image Processing (ICIP).   IEEE, 2022, pp. 1916–1920.
  13. C. Fan, Y. Peng, C. Cao, X. Liu, S. Hou, J. Chi, Y. Huang, Q. Li, and Z. He, “Gaitpart: Temporal part-based model for gait recognition,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 14 225–14 233.
  14. H. Chao, Y. He, J. Zhang, and J. Feng, “Gaitset: Regarding gait as a set for cross-view gait recognition,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 8126–8133.
  15. B. Lin, S. Zhang, X. Yu, Z. Chu, and H. Zhang, “Learning effective representations from global and local features for cross-view gait recognition,” arXiv preprint arXiv:2011.01461, vol. 4, no. 6, 2020.
  16. A. Sepas-Moghaddam and A. Etemad, “View-invariant gait recognition with attentive recurrent learning of partial representations,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 1, pp. 124–137, 2020.
  17. Y. Zhang, Y. Huang, S. Yu, and L. Wang, “Cross-view gait recognition by discriminative feature learning,” IEEE Transactions on Image Processing, vol. 29, pp. 1001–1015, 2019.
  18. A. Sepas-Moghaddam, S. Ghorbani, N. F. Troje, and A. Etemad, “Gait recognition using multi-scale partial representation transformation with capsules,” in 2020 25th International Conference on Pattern Recognition (ICPR).   IEEE, 2021, pp. 8045–8052.
  19. S. Hou, C. Cao, X. Liu, and Y. Huang, “Gait lateral network: Learning discriminative and compact representations for gait recognition,” in European Conference on Computer Vision.   Springer, 2020, pp. 382–398.
  20. S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer, “The humanid gait challenge problem: Data sets, performance, and analysis,” IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 2, pp. 162–177, 2005.
  21. S. Yu, H. Chen, Q. Wang, L. Shen, and Y. Huang, “Invariant feature extraction for gait recognition using only one uniform model,” Neurocomputing, vol. 239, pp. 81–93, 2017.
  22. T. Wolf, M. Babaee, and G. Rigoll, “Multi-view gait recognition using 3d convolutional neural networks,” in 2016 IEEE International Conference on Image Processing (ICIP).   IEEE, 2016, pp. 4165–4169.
  23. S. Tong, Y. Fu, X. Yue, and H. Ling, “Multi-view gait recognition based on a spatial-temporal deep neural network,” IEEE Access, vol. 6, pp. 57 583–57 596, 2018.
  24. B. Lin, S. Zhang, and X. Yu, “Gait recognition via effective global-local feature representation and local temporal aggregation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14 648–14 656.
  25. R. Tanawongsuwan and A. Bobick, “Gait recognition from time-normalized joint-angle trajectories in the walking plane,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 2.   IEEE, 2001, pp. II–II.
  26. R. Liao, C. Cao, E. B. Garcia, S. Yu, and Y. Huang, “Pose-based temporal-spatial network (ptsn) for gait recognition with carrying and clothing variations,” in Chinese conference on biometric recognition.   Springer, 2017, pp. 474–483.
  27. R. Liao, S. Yu, W. An, and Y. Huang, “A model-based gait recognition method with body pose and human prior knowledge,” Pattern Recognition, vol. 98, p. 107069, 2020.
  28. N. Li, X. Zhao, and C. Ma, “Jointsgait: A model-based gait recognition method based on gait graph convolutional networks and joints relationship pyramid mapping,” arXiv preprint arXiv:2005.08625, 2020.
  29. T. Teepe, A. Khan, J. Gilg, F. Herzog, S. Hörmann, and G. Rigoll, “Gaitgraph: graph convolutional network for skeleton-based gait recognition,” in 2021 IEEE International Conference on Image Processing (ICIP).   IEEE, 2021, pp. 2314–2318.
  30. Y. Peng, S. Hou, K. Ma, Y. Zhang, Y. Huang, and Z. He, “Learning rich features for gait recognition by integrating skeletons and silhouettes,” arXiv preprint arXiv:2110.13408, 2021.
  31. S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition,” in Thirty-second AAAI conference on artificial intelligence, 2018.
  32. Y.-F. Song et al., “Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based action recognition,” in ACM International Conference on Multimedia, 2020, pp. 1625–1633.
  33. L. Wang and J. Chen, “A two-branch neural network for gait recognition,” arXiv preprint arXiv:2202.10645, 2022.
  34. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” Advances in neural information processing systems, vol. 30, 2017.
  35. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” Acm Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.
  36. D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object recognition,” in 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2015, pp. 922–928.
  37. T. Le and Y. Duan, “Pointgrid: A deep network for 3d shape understanding,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9204–9214.
  38. S. Gao, J. Yun, Y. Zhao, and L. Liu, “Gait-d: Skeleton-based gait feature decomposition for gait recognition,” IET Computer Vision, vol. 16, no. 2, pp. 111–125, 2022.
  39. C. Zhang, X.-P. Chen, G.-Q. Han, and X.-J. Liu, “Spatial transformer network on skeleton-based gait recognition,” arXiv preprint arXiv:2204.03873, 2022.
  40. K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for human pose estimation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 5693–5703.
  41. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  42. H. Chao, K. Wang, Y. He, J. Zhang, and J. Feng, “Gaitset: Cross-view gait recognition through utilizing gait as a deep set,” IEEE transactions on pattern analysis and machine intelligence, 2021.
  43. N. Takemura, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, “Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition,” IPSJ Transactions on Computer Vision and Applications, vol. 10, no. 1, pp. 1–14, 2018.
  44. W. An, S. Yu, Y. Makihara, X. Wu, C. Xu, Y. Yu, R. Liao, and Y. Yagi, “Performance evaluation of model-based gait on multi-view very large population database with pose sequences,” IEEE transactions on biometrics, behavior, and identity science, vol. 2, no. 4, pp. 421–430, 2020.
  45. M. Xu, J. Zhang, Z. Zhou, M. Xu, X. Qi, and Y. Qiao, “Learning geometry-disentangled representation for complementary understanding of 3d object point cloud,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 3056–3064.

Summary

We haven't generated a summary for this paper yet.