Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic mutual information in quadratic estimation problems over compact groups (2404.10169v1)

Published 15 Apr 2024 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: Motivated by applications to group synchronization and quadratic assignment on random data, we study a general problem of Bayesian inference of an unknown ``signal'' belonging to a high-dimensional compact group, given noisy pairwise observations of a featurization of this signal. We establish a quantitative comparison between the signal-observation mutual information in any such problem with that in a simpler model with linear observations, using interpolation methods. For group synchronization, our result proves a replica formula for the asymptotic mutual information and Bayes-optimal mean-squared-error. Via analyses of this replica formula, we show that the conjectural phase transition threshold for computationally-efficient weak recovery of the signal is determined by a classification of the real-irreducible components of the observed group representation(s), and we fully characterize the information-theoretic limits of estimation in the example of angular/phase synchronization over $SO(2)$/$U(1)$. For quadratic assignment, we study observations given by a kernel matrix of pairwise similarities and a randomly permutated and noisy counterpart, and we show in a bounded signal-to-noise regime that the asymptotic mutual information coincides with that in a Bayesian spiked model with i.i.d. signal prior.

Citations (2)

Summary

We haven't generated a summary for this paper yet.