Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GeoAI Reproducibility and Replicability: a computational and spatial perspective (2404.10108v2)

Published 15 Apr 2024 in cs.CV and cs.LG

Abstract: GeoAI has emerged as an exciting interdisciplinary research area that combines spatial theories and data with cutting-edge AI models to address geospatial problems in a novel, data-driven manner. While GeoAI research has flourished in the GIScience literature, its reproducibility and replicability (R&R), fundamental principles that determine the reusability, reliability, and scientific rigor of research findings, have rarely been discussed. This paper aims to provide an in-depth analysis of this topic from both computational and spatial perspectives. We first categorize the major goals for reproducing GeoAI research, namely, validation (repeatability), learning and adapting the method for solving a similar or new problem (reproducibility), and examining the generalizability of the research findings (replicability). Each of these goals requires different levels of understanding of GeoAI, as well as different methods to ensure its success. We then discuss the factors that may cause the lack of R&R in GeoAI research, with an emphasis on (1) the selection and use of training data; (2) the uncertainty that resides in the GeoAI model design, training, deployment, and inference processes; and more importantly (3) the inherent spatial heterogeneity of geospatial data and processes. We use a deep learning-based image analysis task as an example to demonstrate the results' uncertainty and spatial variance caused by different factors. The findings reiterate the importance of knowledge sharing, as well as the generation of a "replicability map" that incorporates spatial autocorrelation and spatial heterogeneity into consideration in quantifying the spatial replicability of GeoAI research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Anselin, L.  (1989). What is special about spatial data? Alternative perspectives on spatial data analysis (89-4). \NAT@swatrue Anselin et al. (2014) Anselin, L., Rey, S. J., and Li, W.  (2014). Metadata and provenance for spatial analysis: The case of spatial weights. International Journal of Geographical Information Science, 28(11), 2261–2280. \NAT@swatrue Association for Computing Machinery (2020) Association for Computing Machinery.  (2020). Artifact Review and Badging - Current. https://www.acm.org/publications/policies/artifact-review-and-badging-current. \NAT@swatrue Baldi and Sadowski (2014) Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Anselin, L., Rey, S. J., and Li, W.  (2014). Metadata and provenance for spatial analysis: The case of spatial weights. International Journal of Geographical Information Science, 28(11), 2261–2280. \NAT@swatrue Association for Computing Machinery (2020) Association for Computing Machinery.  (2020). Artifact Review and Badging - Current. https://www.acm.org/publications/policies/artifact-review-and-badging-current. \NAT@swatrue Baldi and Sadowski (2014) Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Association for Computing Machinery.  (2020). Artifact Review and Badging - Current. https://www.acm.org/publications/policies/artifact-review-and-badging-current. \NAT@swatrue Baldi and Sadowski (2014) Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  2. (2014). Metadata and provenance for spatial analysis: The case of spatial weights. International Journal of Geographical Information Science, 28(11), 2261–2280. \NAT@swatrue Association for Computing Machinery (2020) Association for Computing Machinery.  (2020). Artifact Review and Badging - Current. https://www.acm.org/publications/policies/artifact-review-and-badging-current. \NAT@swatrue Baldi and Sadowski (2014) Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Association for Computing Machinery.  (2020). Artifact Review and Badging - Current. https://www.acm.org/publications/policies/artifact-review-and-badging-current. \NAT@swatrue Baldi and Sadowski (2014) Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  3. Association for Computing Machinery.  (2020). Artifact Review and Badging - Current. https://www.acm.org/publications/policies/artifact-review-and-badging-current. \NAT@swatrue Baldi and Sadowski (2014) Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Baldi, P., and Sadowski, P.  (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  4. (2014). The dropout learning algorithm. Artificial intelligence, 210, 78–122. \NAT@swatrue Barnes and van Meeteren (2022) Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Barnes, T., and van Meeteren, M.  (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  5. (2022). The great debate in mid-twentieth-century american geography: Fred k. schaefer vs. richard hartshorne. In The routledge handbook of methodologies in human geography (pp. 9–23). Routledge. \NAT@swatrue Borgman (2012) Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  6. Borgman, C. L.  (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078. \NAT@swatrue Boulton (2012) Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  7. Boulton, G.  (2012). Open your minds and share your results. Nature, 486(7404), 441–441. \NAT@swatrue Dosovitskiy et al. (2020) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., … Gelly, S.  (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  8. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. \NAT@swatrue Edgett et al. (2003) Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edgett, K. S., Williams, R. M., Malin, M. C., Cantor, B. A., and Thomas, P. C.  (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  9. (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology, 52(3-4), 289–297. \NAT@swatrue Edwards et al. (2011) Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Edwards, CS., Nowicki, KJ., Christensen, PR., Hill, J., Gorelick, N., and Murray, K.  (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  10. (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). \NAT@swatrue Fotheringham et al. (2003) Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Brunsdon, C., and Charlton, M.  (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  11. (2003). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. \NAT@swatrue Fotheringham et al. (2017) Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Fotheringham, A. S., Yang, W., and Kang, W.  (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  12. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. \NAT@swatrue Gao et al. (2023) Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Gao, S., Hu, Y., and Li, W.  (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  13. (2023). Handbook of geospatial artificial intelligence. CRC Press. \NAT@swatrue Goodchild and Li (2021) Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodchild, M. F., and Li, W.  (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  14. (2021). Replication across space and time must be weak in the social and environmental sciences. Proceedings of the National Academy of Sciences, 118(35). \NAT@swatrue Goodman et al. (2016) Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Goodman, S. N., Fanelli, D., and Ioannidis, J. P.  (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  15. (2016). What does research reproducibility mean? Science translational medicine, 8(341), 341ps12-341ps12. \NAT@swatrue Holtzman et al. (2020) Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.  (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  16. (2020). The curious case of neural text degeneration. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=rygGQyrFvH \NAT@swatrue Hsu and Li (2023) Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., and Li, W.  (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  17. (2023). Explainable geoai: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963–987. \NAT@swatrue Hsu et al. (2021) Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Hsu, C.-Y., Li, W., and Wang, S.  (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  18. (2021, May). Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sensing, 13(11), 2116. \NAT@swatrue Janowicz et al. (2020) Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.  (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  19. (2020). Geoai: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond (Vol. 34) (No. 4). Taylor & Francis. \NAT@swatrue Jasny et al. (2017) Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Jasny, BR., Wigginton, N., McNutt, M., Bubela, T., Buck, S., Cook-Deegan, R., … Kiermer, V.  (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  20. (2017). Fostering reproducibility in industry-academia research. Science, 357(6353), 759–761. \NAT@swatrue Kedron, Frazier, et al. (2021) Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Frazier, A. E., Trgovac, A. B., Nelson, T., and Fotheringham, A. S.  (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  21. (2021). Reproducibility and replicability in geographical analysis. Geographical Analysis, 53(1), 135–147. \NAT@swatrue Kedron and Holler (2022) Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., and Holler, J.  (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  22. (2022). Replication and the search for the laws in the geographic sciences. Annals of GIS, 28(1), 45–56. \NAT@swatrue Kedron, Li, et al. (2021) Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kedron, P., Li, W., Fotheringham, S., and Goodchild, M.  (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  23. (2021). Reproducibility and replicability: Opportunities and challenges for geospatial research. International Journal of Geographical Information Science, 35(3), 427–445. \NAT@swatrue Konkol et al. (2019) Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Konkol, M., Kray, C., and Pfeiffer, M.  (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  24. (2019). Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, 33(2), 408–429. \NAT@swatrue Kool et al. (2019) Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kool, W., Van Hoof, H., and Welling, M.  (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  25. (2019). Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement. In International conference on machine learning (pp. 3499–3508). \NAT@swatrue Kreslavsky and Head (2003) Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Kreslavsky, M., and Head, J.  (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  26. (2003). North–south topographic slope asymmetry on mars: Evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15). \NAT@swatrue Levene (1960) Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  27. Levene, H.  (1960). Robust tests for equality of variances. Contributions to probability and statistics, 278–292. \NAT@swatrue W. Li (2020) Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  28. Li, W.  (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science(20), 71–77. \NAT@swatrue W. Li et al. (2014) Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Church, R. L., and Goodchild, M. F.  (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  29. (2014). The p-compact-regions problem. Geographical Analysis, 46(3), 250–273. \NAT@swatrue W. Li and Hsu (2022) Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., and Hsu, C.-Y.  (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  30. (2022). Geoai for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), 385. \NAT@swatrue W. Li et al. (2021) Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, W., Hsu, C.-Y., and Hu, M.  (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  31. (2021). Tobler’s first law in geoai: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. \NAT@swatrue Y. Li, Mao, et al. (2022) Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Mao, H., Girshick, R., and He, K.  (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  32. (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner (Eds.), Computer Vision – ECCV 2022 (Vol. 13669, pp. 280–296). Cham: Springer Nature Switzerland. Y. Li, Wu, et al. (2022) Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Li, Y., Wu, C.-Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., & Feichtenhofer, C.  (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  33. (2022, June). MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4794–4804). New Orleans, LA, USA: IEEE. Liu & Biljecki (2022) Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Liu, P., & Biljecki, F.  (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  34. (2022). A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. Maxwell et al. (2022) Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Maxwell, A. E., Bester, M. S., & Ramezan, C. A.  (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  35. (2022). Enhancing Reproducibility and Replicability in Remote Sensing Deep Learning Research and Practice. Remote Sensing, 14(22), 5760. Meister et al. (2020) Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Meister, C., Cotterell, R., & Vieira, T.  (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  36. (2020). If beam search is the answer, what was the question? In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 2173–2185). Pham et al. (2020) Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., … Nagappan, N.  (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  37. (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international conference on automated software engineering (pp. 771–783). Rey et al. (2015) Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J.  (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  38. (2015). Open geospatial analytics with PySAL. ISPRS International Journal of Geo-Information, 4(2), 815–836. Robbins & Hynek (2012) Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robbins, S. J., & Hynek, B. M.  (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  39. (2012). A new global database of Mars impact craters≥\geq≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research: Planets, 117(E5). Robinson & Catling (2014) Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Robinson, T. D., & Catling, D. C.  (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  40. (2014). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), 12–15. Ross et al. (2017) Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Ross, A., Willson, V. L., Ross, A., & Willson, V. L.  (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  41. (2017). Paired samples t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, 17–19. Shao et al. (2020) Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shao, H., Li, W., Kang, W., & Rey, S. J.  (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  42. (2020). When spatial analytics meets cyberinfrastructure: An interoperable and replicable platform for online spatial-statistical-visual analytics. Journal of Geovisualization and Spatial Analysis, 4, 1–16. Shih et al. (2023) Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Shih, A., Sadigh, D., & Ermon, S.  (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  43. (2023). Long horizon temperature scaling. In International conference on machine learning (pp. 31422–31434). Sui & Kedron (2021) Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Sui, D., & Kedron, P.  (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  44. (2021). Reproducibility and replicability in the context of the contested identities of geography. Annals of the American Association of Geographers, 111(5), 1275–1283. Usery et al. (2022) Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D.  (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  45. (2022). Geoai in the us geological survey for topographic mapping. Transactions in GIS, 26(1), 25–40. VoPham et al. (2018) VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y.  (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  46. (2018). Emerging trends in geospatial artificial intelligence (geoai): potential applications for environmental epidemiology. Environmental Health, 17, 1–6. Wilson et al. (2021) Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J.  (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  47. (2021). A five-star guide for achieving replicability and reproducibility when working with GIS software and algorithms. Annals of the American Association of Geographers, 111(5), 1311–1317. Wright (2016) Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
  48. Wright, D. J.  (2016). Toward a digital resilience. Elementa, 4, 000082.
Citations (4)

Summary

We haven't generated a summary for this paper yet.