Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Risk Analysis of Financial Derivatives (2404.10088v1)

Published 15 Apr 2024 in quant-ph and q-fin.CP

Abstract: We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers: the first by applying existing ideas from quantum risk analysis to derivative pricing, and the second based on a novel approach using Quantum Signal Processing (QSP). Previous work in the literature has shown that quantum advantage is possible in the context of individual derivative pricing and that advantage can be leveraged in a straightforward manner in the estimation of the VaR and CVaR. The algorithms we introduce in this work aim to provide an additional advantage by encoding the derivative price over multiple market scenarios in superposition and computing the desired values by applying appropriate transformations to the quantum system. We perform complexity and error analysis of both algorithms, and show that while the two algorithms have the same asymptotic scaling the QSP-based approach requires significantly fewer quantum resources for the same target accuracy. Additionally, by numerically simulating both quantum and classical VaR algorithms, we demonstrate that the quantum algorithm can extract additional advantage from a quantum computer compared to individual derivative pricing. Specifically, we show that under certain conditions VaR estimation can lower the latest published estimates of the logical clock rate required for quantum advantage in derivative pricing by up to $\sim 30$x. In light of these results, we are encouraged that our formulation of derivative pricing in the QSP framework may be further leveraged for quantum advantage in other relevant financial applications, and that quantum computers could be harnessed more efficiently by considering problems in the financial sector at a higher level.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. A. Montanaro, “Quantum speedup of Monte Carlo methods,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 471 (2015).
  2. P. Rebentrost, B. Gupt,  and T. R. Bromley, “Quantum computational finance: Monte Carlo pricing of financial derivatives,” Phys. Rev. A 98, 022321 (2018).
  3. S. Woerner and D. J. Egger, “Quantum risk analysis,” npj Quantum Information 5 (2019).
  4. N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen,  and S. Woerner, “Option Pricing using Quantum Computers,” Quantum 4, 291 (2020).
  5. S. Herbert, “Quantum Monte Carlo Integration: The Full Advantage in Minimal Circuit Depth,” Quantum 6, 823 (2022).
  6. S. Chakrabarti, R. Krishnakumar, G. Mazzola, N. Stamatopoulos, S. Woerner,  and W. J. Zeng, “A Threshold for Quantum Advantage in Derivative Pricing,” Quantum 5, 463 (2021).
  7. N. Stamatopoulos, G. Mazzola, S. Woerner,  and W. J. Zeng, “Towards Quantum Advantage in Financial Market Risk using Quantum Gradient Algorithms,” Quantum 6, 770 (2022).
  8. H. Markowitz, “Portfolio Selection,” The Journal of Finance 7, 77 (1952).
  9. A. D. Roy, “Safety First and the Holding of Assets,” Econometrica 20, 431 (1952).
  10. D. J. Egger, R. G. Gutierrez, J. C. Mestre,  and S. Woerner, “Credit risk analysis using quantum computers,” IEEE Transactions on Computers  (2020).
  11. G. H. Low and I. L. Chuang, “Optimal Hamiltonian Simulation by Quantum Signal Processing,” Phys. Rev. Lett. 118, 010501 (2017a).
  12. A. Gilyén, Y. Su, G. H. Low,  and N. Wiebe, “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019) pp. 193–204.
  13. G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization,” Quantum 3, 163 (2019).
  14. Y. Kikuchi, C. Mc Keever, L. Coopmans, M. Lubasch,  and M. Benedetti, “Realization of quantum signal processing on a noisy quantum computer,” npj Quantum Information 9 (2023).
  15. J. M. Martyn, Z. M. Rossi, A. K. Tan,  and I. L. Chuang, “Grand Unification of Quantum Algorithms,” PRX Quantum 2 (2021a).
  16. J. M. Martyn, Y. Liu, Z. E. Chin,  and I. L. Chuang, “Efficient Fully-Coherent Hamiltonian Simulation,” arXiv preprint arXiv:2110.11327  (2021b), arXiv:2110.11327 [quant-ph] .
  17. L. Lin and Y. Tong, “Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems,” Quantum 4, 361 (2020).
  18. P. Rall and B. Fuller, “Amplitude Estimation from Quantum Signal Processing,” Quantum 7, 937 (2023).
  19. N. Stamatopoulos and W. J. Zeng, “Derivative Pricing using Quantum Signal Processing,”   (2023), arXiv:2307.14310 [quant-ph] .
  20. A. Gilyén, S. Arunachalam,  and N. Wiebe, “Optimizing quantum optimization algorithms via faster quantum gradient computation,” Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms , 1425–1444 (2019).
  21. G. Brassard, P. Hoyer, M. Mosca,  and A. Tapp, “Quantum Amplitude Amplification and Estimation,” Contemporary Mathematics 305 (2002).
  22. D. Grinko, J. Gacon, C. Zoufal,  and S. Woerner, “Iterative quantum amplitude estimation,” npj Quantum Information 7 (2021).
  23. Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera,  and N. Yamamoto, “Amplitude estimation without phase estimation,” Quantum Information Processing 19, 75 (2020).
  24. T. Giurgica-Tiron, I. Kerenidis, F. Labib, A. Prakash,  and W. Zeng, “Low depth algorithms for quantum amplitude estimation,” Quantum 6, 745 (2022).
  25. P. Rall, “Faster Coherent Quantum Algorithms for Phase, Energy, and Amplitude Estimation,” Quantum 5, 566 (2021).
  26. J. Haah, “Product Decomposition of Periodic Functions in Quantum Signal Processing,” Quantum 3, 190 (2019).
  27. R. Chao, D. Ding, A. Gilyen, C. Huang,  and M. Szegedy, “Finding Angles for Quantum Signal Processing with Machine Precision,” arXiv preprint arXiv:2003.02831  (2020), arXiv:2003.02831 [quant-ph] .
  28. Y. Dong, L. Lin,  and Y. Tong, “Ground-State Preparation and Energy Estimation on Early Fault-Tolerant Quantum Computers via Quantum Eigenvalue Transformation of Unitary Matrices,” PRX Quantum 3 (2022).
  29. G. H. Low and I. L. Chuang, “Hamiltonian simulation by uniform spectral amplification,” arXiv preprint arXiv:1707.05391  (2017b).
  30. B. D. Clader, A. M. Dalzell, N. Stamatopoulos, G. Salton, M. Berta,  and W. J. Zeng, “Quantum Resources Required to Block-Encode a Matrix of Classical Data,” IEEE Transactions on Quantum Engineering 3, 1–23 (2022).
  31. J. O’Brien and P. J. Szerszeń, ‘‘An evaluation of bank measures for market risk before, during and after the financial crisis,” Journal of Banking & Finance 80, 215 (2017).
  32. J. Milek, “Quantum Implementation of Risk Analysis-relevant Copulas,” arXiv preprint arXiv:2002.07389  (2020).
  33. D. Zhu, W. Shen, A. Giani, S. R. Majumder, B. Neculaes,  and S. Johri, “Copula-based Risk Aggregation with Trapped Ion Quantum Computers,” arXiv preprint arXiv:2206.11937  (2022).
  34. N. J. Ross and P. Selinger, “Optimal Ancilla-Free Clifford+T Approximation of z-Rotations,” Quantum Info. Comput. 16, 901 (2016).
  35. T. Kim and B. Choi, “Efficient decomposition methods for controlled-R n using a single ancillary qubit,” Scientific Reports 8 (2018).
  36. A. Shukla and P. Vedula, “An efficient quantum algorithm for preparation of uniform quantum superposition states,” Quantum Information Processing 23 (2024).
  37. M. B. Giles and A.-L. Haji-Ali, “Multilevel Nested Simulation for Efficient Risk Estimation,” SIAM/ASA Journal on Uncertainty Quantification 7, 497 (2019).
  38. D. An, N. Linden, J.-P. Liu, A. Montanaro, C. Shao,  and J. Wang, “Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance,” Quantum 5, 481 (2021).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com