Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling the Lane-Change Reactions to Merging Vehicles for Highway On-Ramp Simulations (2404.09851v2)

Published 15 Apr 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Enhancing simulation environments to replicate real-world driver behavior is essential for developing Autonomous Vehicle technology. While some previous works have studied the yielding reaction of lag vehicles in response to a merging car at highway on-ramps, the possible lane-change reaction of the lag car has not been widely studied. In this work we aim to improve the simulation of the highway merge scenario by including the lane-change reaction in addition to yielding behavior of main-lane lag vehicles, and we evaluate two different models for their ability to capture this reactive lane-change behavior. To tune the payoff functions of these models, a novel naturalistic dataset was collected on U.S. highways that provided several hours of merge-specific data to learn the lane change behavior of U.S. drivers. To make sure that we are collecting a representative set of different U.S. highway geometries in our data, we surveyed 50,000 U.S. highway on-ramps and then selected eight representative sites. The data were collected using roadside-mounted lidar sensors to capture various merge driver interactions. The models were demonstrated to be configurable for both keep-straight and lane-change behavior. The models were finally integrated into a high-fidelity simulation environment and confirmed to have adequate computation time efficiency for use in large-scale simulations to support autonomous vehicle development.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. R. Margiotta and D. Snyder, “An agency guide on how to establish localized congestion mitigation programs (tech. rep.),” United States. Federal Highway Administration. Office of Operations, 2011.
  2. D. Marinescu, J. Čurn, M. Bouroche, and V. Cahill, “On-ramp traffic merging using cooperative intelligent vehicles: A slot-based approach,” in 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012, pp. 900–906.
  3. F. Marczak, W. Daamen, and C. Buisson, “Merging behaviour: Empirical comparison between two sites and new theory development,” Transportation Research Part C: Emerging Technologies, vol. 36, pp. 530–546, 2013.
  4. J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1066–1077, 2016.
  5. J. Sun, J. Ouyang, and J. Yang, “Modeling and analysis of merging behavior at expressway on-ramp bottlenecks,” Transportation Research Record, vol. 2421, no. 1, pp. 74–81, 2014.
  6. A. Zgonnikov, D. Abbink, and G. Markkula, “Should i stay or should i go? evidence accumulation drives decision making in human drivers,” 2020.
  7. J. Rios-Torres and A. A. Malikopoulos, “Automated and cooperative vehicle merging at highway on-ramps,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 4, pp. 780–789, 2016.
  8. S. D. Kumaravel, A. A. Malikopoulos, and R. Ayyagari, “Decentralized cooperative merging of platoons of connected and automated vehicles at highway on-ramps,” in 2021 American Control Conference (ACC).   IEEE, 2021, pp. 2055–2060.
  9. S. Bae, D. Saxena, A. Nakhaei, C. Choi, K. Fujimura, and S. Moura, “Cooperation-aware lane change maneuver in dense traffic based on model predictive control with recurrent neural network,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 1209–1216.
  10. S. Bae, D. Isele, A. Nakhaei, P. Xu, A. M. Añon, C. Choi, K. Fujimura, and S. Moura, “Lane-change in dense traffic with model predictive control and neural networks,” IEEE Transactions on Control Systems Technology, vol. 31, no. 2, pp. 646–659, 2022.
  11. J. Knaup, J. D’sa, B. Chalaki, T. Naes, H. N. Mahjoub, E. Moradi-Pari, and P. Tsiotras, “Active learning with dual model predictive path-integral control for interaction-aware autonomous highway on-ramp merging,” arXiv preprint arXiv:2310.07840, 2023.
  12. W. Daamen, M. Loot, and S. P. Hoogendoorn, “Empirical analysis of merging behavior at freeway on-ramp,” Transportation Research Record, vol. 2188, no. 1, pp. 108–118, 2010.
  13. L. Yue, M. Abdel-Aty, and Z. Wang, “Effects of connected and autonomous vehicle merging behavior on mainline human-driven vehicle,” Journal of Intelligent and Connected Vehicles, vol. 5, no. 3, pp. 36–45, 2022.
  14. H. Wang, W. Wang, S. Yuan, X. Li, and L. Sun, “On social interactions of merging behaviors at highway on-ramps in congested traffic,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11 237–11 248, 2021.
  15. C. F. Choudhury, V. Ramanujam, and M. E. Ben-Akiva, “Modeling acceleration decisions for freeway merges,” Transportation research record, vol. 2124, no. 1, pp. 45–57, 2009.
  16. D. Holley, J. D’sa, H. N. Mahjoub, G. Ali, B. Chalaki, and E. Moradi-Pari, “MR-IDM–merge reactive intelligent driver model: Towards enhancing laterally aware car-following models,” arXiv preprint arXiv:2305.12014, 2023.
  17. K. Kang and H. A. Rakha, “Game theoretical approach to model decision making for merging maneuvers at freeway on-ramps,” Transportation Research Record, vol. 2623, no. 1, pp. 19–28, 2017.
  18. W. Chen, G. Ren, Q. Cao, J. Song, Y. Liu, and C. Dong, “A game-theory-based approach to modeling lane-changing interactions on highway on-ramps: Considering the bounded rationality of drivers,” Mathematics, vol. 11, no. 2, p. 402, 2023.
  19. A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model MOBIL for car-following models,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1999, pp. 86–94, 2007.
  20. P. G. Gipps, “A model for the structure of lane-changing decisions,” Transportation Research Part B, vol. 20, no. 5, pp. 403–414, 1986.
  21. W. J. Schakel, V. L. Knoop, , and B. van Arem, “Integrated lane change model with relaxation and synchronization,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2316, pp. 47–57, 2012.
  22. Y. Hongtao, H. E. Tseng, and R. Langari, “A human-like game theory-based controller for automatic lane changing,” Transportation Research Part C, vol. 88, pp. 140–158, 2018.
  23. B. Wang, Z. Li, S. Wang, M. Li, and A. Ji, “Modeling bounded rationality in discretionary lane change with the quantal response equilibrium of game theory,” Transportation Research Part B, vol. 164, pp. 145–161, 2022.
  24. W. Chen, G. Ren, Q. Cao, J. Song, Y. Lui, and C. Dong, “A game-theory-based approach to modeling lane-changing interactions on highway on-ramps: Considering the bounded rationality of drivers,” Mathematics, vol. 11, 2023.
  25. T. Toledo and R. Katz, “State dependence in lane-changing models,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2124, pp. 81–88, 2009.
  26. S. Moridpour, G. Rose, and M. Sarvi, “Modelling the heavy vehicle drivers’ lane changing decision under heavy traffic conditions,” Road and Transport Research, vol. 18, no. 4, pp. 49–57, 2009.
  27. R. Song and B. Li, “Surrounding vehicles’ lane change maneuver prediction and detection for intelligent vehicles: A comprehensive review,” IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 23, no. 7, pp. 6046–6062, 2022.
  28. G. Weidl, A. L. Madsen, S. Wang, D. Kasper, and M. Karlsen, “Early and accurate recognition of highway traffic maneuvers considering real world application: A novel framework using bayesian networks,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 3, pp. 146–158, 2018.
  29. Q. Deng, J. Wang, and S. Dirk, “Prediction of human driver behaviors based on an improved HMM approach,” IEEE Intelligent Vehicles Symposium (IV), pp. 2066–2071, 2018.
  30. J. Hao, D. Chunguang, Y. Liu, and P. Lu, “Gauss mixture hidden Markov model to characterise and model discretionary lane change behaviours for autonomous vehicles,” IET Intelligent Transportation Systems, vol. 14, no. 5, pp. 401–411, 2020.
  31. H. Woo, Y. Ji, H. Kono, Y. Tamura, Y. Kuroda, T. Sugano, Y. Yamamoto, A. Yamashita, and H. Asama, “Lane-change detection based on vehicle-trajectory prediction,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1109–1116, 2017.
  32. A. Zyner, S. Worrall, and E. Nebot, “A recurrent neural network solution for predicting driver intention at unsignalized intersections,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1759–1764, 2018.
  33. T. Alghamdi, S. Mostafi, G. Abdelkader, and K. Elgazzar, “A comparative study on traffic modeling techniques for predicting and simulating traffic behavior,” Future Internet, vol. 14, p. 294, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:252984627
  34. C. IPG, “Reference manual version 9.0. 1,” IPG Automotive GmbH: Karlsruhe, Germany, 2021.
  35. C. U. Manual, “Mechanical simulation corporation,” Ann Arbor, MI, vol. 48013, 2002.
  36. A. PTV, “Ptv vissim 10 user manual,” PTV AG: Karlsruhe, Germany, 2018.
  37. R. Wiedemann, “Simulation des strassenverkehrsflusses,” Schriftenreihe des Instituts für Verkehrswesen der Universität Karlsruhe, Band 8, Karlsruhe, Germany, 1974.
  38. U. Durrani, C. Lee, and H. Maoh, “Calibrating the wiedemann’s vehicle-following model using mixed vehicle-pair interactions,” Transportation research part C: emerging technologies, vol. 67, pp. 227–242, 2016.
  39. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Tech. Rep. 2, 2000.
  40. T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein, “The exid dataset: A real-world trajectory dataset of highly interactive highway scenarios in germany,” in 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 958–964.
  41. W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and M. Tomizuka, “INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps,” arXiv:1910.03088 [cs, eess], Sep. 2019.
  42. Y. Ali, Z. Zheng, M. M. Haque, and M. Wang, “A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment,” Transportation Research Part C, vol. 106, pp. 220–242, 2019.
  43. U.S. Department of Transportation Federal Highway Administration. (2016) Next generation simulation (NGSIM) vehicle trajectories and supporting data. [Online]. Available: http://doi.org/10.21949/1504477
  44. J. E. Taguiam, J. Pacson, and H. S. Palmiano, “Exploratory study in calibrating the politeness factor of MOBIL,” Journal of the Eastern Asia Society for Transportation Studies, vol. 13, pp. 1948–1965, 2019.
  45. R. Katzwer. (2023) Lemke-Howson algorithm for 2-player games. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/44279-lemke-howson-algorithm-for-2-player-games
  46. MathWorks. (2023) MultiStart: Find multiple local minima. [Online]. Available: https://www.mathworks.com/help/gads/multistart.html
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Dustin Holley (3 papers)
  2. Jovin Dsa (1 paper)
  3. Hossein Nourkhiz Mahjoub (22 papers)
  4. Gibran Ali (3 papers)
  5. Tyler Naes (2 papers)
  6. Ehsan Moradi-Pari (16 papers)
  7. Pawan Sai Kallepalli (1 paper)

Summary

We haven't generated a summary for this paper yet.