Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neighbour-level Message Interaction Encoding for Improved Representation Learning on Graphs (2404.09809v1)

Published 15 Apr 2024 in cs.LG and cs.CV

Abstract: Message passing has become the dominant framework in graph representation learning. The essential idea of the message-passing framework is to update node embeddings based on the information aggregated from local neighbours. However, most existing aggregation methods have not encoded neighbour-level message interactions into the aggregated message, resulting in an information lost in embedding generation. And this information lost could be accumulated and become more serious as more layers are added to the graph network model. To address this issue, we propose a neighbour-level message interaction information encoding method for improving graph representation learning. For messages that are aggregated at a node, we explicitly generate an encoding between each message and the rest messages using an encoding function. Then we aggregate these learned encodings and take the sum of the aggregated encoding and the aggregated message to update the embedding for the node. By this way, neighbour-level message interaction information is integrated into the generated node embeddings. The proposed encoding method is a generic method which can be integrated into message-passing graph convolutional networks. Extensive experiments are conducted on six popular benchmark datasets across four highly-demanded tasks. The results show that integrating neighbour-level message interactions achieves improved performance of the base models, advancing the state of the art results for representation learning over graphs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artifical Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.
  2. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Simplifying and powering graph convolution network for recommendation,” in Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, 2020, pp. 639–648.
  3. C. Ji, Y. Zheng, R. Wang, Y. Cai, and H. Wu, “Graph polish: A novel graph generation paradigm for molecular optimization,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  4. M. Sun, S. Zhao, C. Gilvary, O. Elemento, J. Zhou, and F. Wang, “Graph convolutional networks for computational drug development and discovery,” Briefings in bioinformatics, vol. 21, no. 3, pp. 919–935, 2020.
  5. K. Xu, H. Huang, P. Deng, and Y. Li, “Deep feature aggregation framework driven by graph convolutional network for scene classification in remote sensing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5751–5765, 2021.
  6. Y. Ding, Y. Chong, S. Pan, Y. Wang, and C. Nie, “Spatial-spectral unified adaptive probability graph convolutional networks for hyperspectral image classification,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  7. W. Zhang, Z. Chen, C. Dong, W. Wang, H. Zha, and J. Wang, “Graph-based tri-attention network for answer ranking in cqa,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 16, 2021, pp. 14 463–14 471.
  8. M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,” in Proceedings. 2005 IEEE international joint conference on neural networks, vol. 2, no. 2005, 2005, pp. 729–734.
  9. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.
  10. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” International Conference on Learning Representations, 2014.
  11. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in neural information processing systems, 2017, pp. 1024–1034.
  12. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention Networks,” International Conference on Learning Representations, 2018, accepted as poster. [Online]. Available: https://openreview.net/forum?id=rJXMpikCZ
  13. M. Balcilar, G. Renton, P. Héroux, B. Gaüzère, S. Adam, and P. Honeine, “Analyzing the expressive power of graph neural networks in a spectral perspective,” in International Conference on Learning Representations, 2020.
  14. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in International Conference on Learning Representations (ICLR2017), 2017.
  15. X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv preprint arXiv:1711.07553, 2017.
  16. V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.
  17. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems, 2020.
  18. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Advances in neural information processing systems, 2016, pp. 3844–3852.
  19. F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein, “Geometric deep learning on graphs and manifolds using mixture model cnns,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5115–5124.
  20. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  21. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.
  22. H. Gao, X. Han, J. Huang, J.-X. Wang, and L. Liu, “Patchgt: Transformer over non-trainable clusters for learning graph representations,” in Learning on Graphs Conference.   PMLR, 2022, pp. 27–1.
  23. M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional networks,” in International conference on machine learning.   PMLR, 2020, pp. 1725–1735.
  24. L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,” International Conference on Learning Representations, 2020.
  25. Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional networks on node classification,” in International Conference on Learning Representations, 2020.
  26. K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Representation learning on graphs with jumping knowledge networks,” in International Conference on Machine Learning.   PMLR, 2018, pp. 5453–5462.
  27. S. Y. Lee, F. Bu, J. Yoo, and K. Shin, “Towards deep attention in graph neural networks: Problems and remedies,” International conference on machine learning, 2023.
  28. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in International conference on machine learning.   PMLR, 2017, pp. 1263–1272.
  29. D. Marcheggiani and I. Titov, “Encoding sentences with graph convolutional networks for semantic role labeling,” arXiv preprint arXiv:1703.04826, 2017.
  30. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” 2019.
  31. Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph isomorphism testing and function approximation with gnns,” 2019.
  32. H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Provably powerful graph networks,” arXiv preprint arXiv:1905.11136, 2019.
  33. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  34. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  35. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.
  36. E. Abbe, “Community detection and stochastic block models: recent developments,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6446–6531, 2017.
  37. D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde tsp solver,” 2006.
  38. J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman, “Zinc: a free tool to discover chemistry for biology,” Journal of chemical information and modeling, vol. 52, no. 7, pp. 1757–1768, 2012.
  39. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  40. H. Zhang, M. Xu, G. Zhang, and K. Niwa, “Ssfg: Stochastically scaling features and gradients for regularizing graph convolutional networks,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  41. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.
  42. M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Haimin Zhang (29 papers)
  2. Min Xu (169 papers)

Summary

We haven't generated a summary for this paper yet.