Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising (2404.09697v1)

Published 15 Apr 2024 in cs.CV

Abstract: Effectively discerning spatial-spectral dependencies in HSI denoising is crucial, but prevailing methods using convolution or transformers still face computational efficiency limitations. Recently, the emerging Selective State Space Model(Mamba) has risen with its nearly linear computational complexity in processing natural language sequences, which inspired us to explore its potential in handling long spectral sequences. In this paper, we propose HSIDMamba(HSDM), tailored to exploit the linear complexity for effectively capturing spatial-spectral dependencies in HSI denoising. In particular, HSDM comprises multiple Hyperspectral Continuous Scan Blocks, incorporating BCSM(Bidirectional Continuous Scanning Mechanism), scale residual, and spectral attention mechanisms to enhance the capture of long-range and local spatial-spectral information. BCSM strengthens spatial-spectral interactions by linking forward and backward scans and enhancing information from eight directions through SSM, significantly enhancing the perceptual capability of HSDM and improving denoising performance more effectively. Extensive evaluations against HSI denoising benchmarks validate the superior performance of HSDM, achieving state-of-the-art results in performance and surpassing the efficiency of the latest transformer architectures by $30\%$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. N. Aburaed, M. Q. Alkhatib, S. Marshall, J. Zabalza, and H. Al Ahmad, “A review of spatial enhancement of hyperspectral remote sensing imaging techniques,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 2275–2300, 2023.
  2. X. He, C. Tang, X. Liu, W. Zhang, K. Sun, and J. Xu, “Object detection in hyperspectral image via unified spectral-spatial feature aggregation,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  3. J. Jang, S. Oh, Y. Kim, D. Seo, Y. Choi, and H. J. Yang, “Sodai: Multi-modal maritime object detection dataset with rgb and hyperspectral image sensors,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  4. J. Yang, B. Du, D. Wang, and L. Zhang, “Iter: Image-to-pixel representation for weakly supervised hsi classification,” IEEE Transactions on Image Processing, 2023.
  5. Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Cai, N. Yang, and B. Wang, “Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification,” Expert Systems with Applications, vol. 223, p. 119858, 2023.
  6. L. Sun and B. Jeon, “Hyperspectral mixed denoising via subspace low rank learning and bm4d filtering,” in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2018, pp. 8034–8037.
  7. W. He, H. Zhang, H. Shen, and L. Zhang, “Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 3, pp. 713–729, 2018.
  8. W. He, Q. Yao, C. Li, N. Yokoya, and Q. Zhao, “Non-local meets global: An integrated paradigm for hyperspectral denoising,” 2019, pp. 6868–6877.
  9. J. Guan, R. Lai, H. Li, Y. Yang, and L. Gu, “Dnrcnn: Deep recurrent convolutional neural network for hsi destriping,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  10. K. Wei, Y. Fu, and H. Huang, “3-d quasi-recurrent neural network for hyperspectral image denoising,” vol. 32, no. 1, pp. 363–375, 2020.
  11. S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in vision: A survey,” ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1–41, 2022.
  12. M. Li, Y. Fu, and Y. Zhang, “Spatial-spectral transformer for hyperspectral image denoising,” vol. 37, no. 1, 2023, pp. 1368–1376.
  13. M. Li, J. Liu, Y. Fu, Y. Zhang, and D. Dou, “Spectral enhanced rectangle transformer for hyperspectral image denoising,” 2023, pp. 5805–5814.
  14. A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with structured state spaces,” arXiv preprint arXiv:2111.00396, 2021.
  15. J. Smith, A. Warrington, and S. Linderman, “Simplified state space layers for sequence modeling,” Aug 2022.
  16. D. Y. Fu, T. Dao, K. K. Saab, A. W. Thomas, A. Rudra, and C. Ré, “Hungry hungry hippos: Towards language modeling with state space models,” arXiv preprint arXiv:2212.14052, 2022.
  17. H. Mehta, A. Gupta, A. Cutkosky, and B. Neyshabur, “Long range language modeling via gated state spaces,” Jun 2022.
  18. A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,” Dec 2023.
  19. K. Li, X. Li, Y. Wang, Y. He, Y. Wang, L. Wang, and Y. Qiao, “Videomamba: State space model for efficient video understanding,” arXiv preprint arXiv:2403.06977, 2024.
  20. H. Guo, J. Li, T. Dai, Z. Ouyang, X. Ren, and S.-T. Xia, “Mambair: A simple baseline for image restoration with state-space model,” arXiv preprint arXiv:2402.15648, 2024.
  21. V. T. Hu, S. A. Baumann, M. Gui, O. Grebenkova, P. Ma, J. Fischer, and B. Ommer, “Zigma: Zigzag mamba diffusion model,” arXiv preprint arXiv:2403.13802, 2024.
  22. Q. Zhang, Q. Yuan, J. Li, X. Liu, H. Shen, and L. Zhang, “Hybrid noise removal in hyperspectral imagery with a spatial–spectral gradient network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 10, pp. 7317–7329, 2019.
  23. Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 1205–1218, 2018.
  24. F. Xiong, J. Zhou, Q. Zhao, J. Lu, and Y. Qian, “Mac-net: Model-aided nonlocal neural network for hyperspectral image denoising,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  25. S. Mei, C. Song, M. Ma, and F. Xu, “Hyperspectral image classification using group-aware hierarchical transformer,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  26. Y. Cai, J. Lin, X. Hu, H. Wang, X. Yuan, Y. Zhang, R. Timofte, and L. Van Gool, “Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 502–17 511.
  27. M. Li, J. Liu, Y. Fu, Y. Zhang, and D. Dou, “Spectral enhanced rectangle transformer for hyperspectral image denoising,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5805–5814.
  28. J. X. Yang, J. Zhou, J. Wang, H. Tian, and A. W. C. Liew, “Hsimamba: Hyperpsectral imaging efficient feature learning with bidirectional state space for classification,” arXiv preprint arXiv:2404.00272, 2024.
  29. Y. Yue and Z. Li, “Medmamba: Vision mamba for medical image classification,” arXiv preprint arXiv:2403.03849, 2024.
  30. K. Wei, Y. Fu, and H. Huang, “3-d quasi-recurrent neural network for hyperspectral image denoising,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 363–375, 2020.
  31. B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal from natural rgb images,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14.   Springer, 2016, pp. 19–34.
  32. J.-I. Park, M.-H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” 2007, pp. 1–8.
  33. V. Mnih and G. E. Hinton, “Learning to detect roads in high-resolution aerial images.”   Springer, 2010, pp. 210–223.
  34. Y. Wang, J. Peng, Q. Zhao, Y. Leung, X.-L. Zhao, and D. Meng, “Hyperspectral image restoration via total variation regularized low-rank tensor decomposition,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 4, pp. 1227–1243, 2017.
  35. Z. Kuang, Y. Gao, G. Li, P. Luo, Y. Chen, L. Lin, and W. Zhang, “Fashion retrieval via graph reasoning networks on a similarity pyramid,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 3066–3075.
  36. T. Bodrito, A. Zouaoui, J. Chanussot, and J. Mairal, “A trainable spectral-spatial sparse coding model for hyperspectral image restoration,” Advances in Neural Information Processing Systems, vol. 34, pp. 5430–5442, 2021.
  37. M. Li, Y. Fu, and Y. Zhang, “Spatial-spectral transformer for hyperspectral image denoising,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 1368–1376.
  38. Z. Lai, C. Yan, and Y. Fu, “Hybrid spectral denoising transformer with guided attention,” 2023, pp. 13 065–13 075.
  39. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  40. R. H. Yuhas, J. W. Boardman, and A. F. Goetz, “Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques,” in JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop, 1993.
  41. X. Cao, X. Fu, C. Xu, and D. Meng, “Deep spatial-spectral global reasoning network for hyperspectral image denoising,” vol. 60, pp. 1–14, 2021.
  42. F. Xiong, J. Zhou, Q. Zhao, J. Lu, and Y. Qian, “Mac-net: Model-aided nonlocal neural network for hyperspectral image denoising,” vol. 60, pp. 1–14, 2021.
  43. T. Bodrito, A. Zouaoui, J. Chanussot, and J. Mairal, “A trainable spectral-spatial sparse coding model for hyperspectral image restoration,” vol. 34, pp. 5430–5442, 2021.
  44. Y. Chang, L. Yan, and S. Zhong, “Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising,” 2017, pp. 4260–4268.
  45. Z. Lai, K. Wei, and Y. Fu, “Deep plug-and-play prior for hyperspectral image restoration,” Neurocomputing, vol. 481, pp. 281–293, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yang Liu (2253 papers)
  2. Jiahua Xiao (2 papers)
  3. Yu Guo (186 papers)
  4. Peilin Jiang (2 papers)
  5. Haiwei Yang (1 paper)
  6. Fei Wang (574 papers)
Citations (3)