Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstructing Curves from Sparse Samples on Riemannian Manifolds (2404.09661v2)

Published 15 Apr 2024 in cs.CG and cs.GR

Abstract: Reconstructing 2D curves from sample points has long been a critical challenge in computer graphics, finding essential applications in vector graphics. The design and editing of curves on surfaces has only recently begun to receive attention, primarily relying on human assistance, and where not, limited by very strict sampling conditions. In this work, we formally improve on the state-of-the-art requirements and introduce an innovative algorithm capable of reconstructing closed curves directly on surfaces from a given sparse set of sample points. We extend and adapt a state-of-the-art planar curve reconstruction method to the realm of surfaces while dealing with the challenges arising from working on non-Euclidean domains. We demonstrate the robustness of our method by reconstructing multiple curves on various surface meshes. We explore novel potential applications of our approach, allowing for automated reconstruction of curves on Riemannian manifolds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. The crust and the beta-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60 (01 1998), 125–135.
  2. A simple algorithm for homeomorphic surface reconstruction. In Proceedings of the sixteenth annual symposium on Computational geometry (2000), pp. 213–222.
  3. The power crust. In Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications (New York, NY, USA, 2001), SMA ’01, Association for Computing Machinery, p. 249–266. URL: https://doi.org/10.1145/376957.376986, doi:10.1145/376957.376986.
  4. Adobe Inc.: Adobe illustrator. URL: https://adobe.com/products/illustrator.
  5. Voronoi Diagrams And Delaunay Triangulations. World Scientific Publishing Company, 2013. URL: https://books.google.it/books?id=cic8DQAAQBAJ.
  6. Althaus E., Mehlhorn K.: Tsp-based curve reconstruction in polynomial time. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms (2000), pp. 686–695.
  7. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS) 22, 4 (1996), 469–483.
  8. Bjorklund A.: Determinant sums for undirected hamiltonicity. SIAM Journal on Computing 43, 1 (2014), 280–299.
  9. Blum H.: A transformation for extracting new descriptions of shape. Models for the perception of speech and visual form (1967), 362–380.
  10. Bowyer A.: Computing Dirichlet tessellations*. The Computer Journal 24, 2 (01 1981), 162–166. URL: https://doi.org/10.1093/comjnl/24.2.162, arXiv:https://academic.oup.com/comjnl/article-pdf/24/2/162/967239/240162.pdf, doi:10.1093/comjnl/24.2.162.
  11. Faust: Dataset and evaluation for 3d mesh registration. In Proceedings of the IEEE conference on computer vision and pattern recognition (2014), pp. 3794–3801.
  12. Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 Courses (2013), pp. 1–126.
  13. Introduction to algorithms. MIT press, 2022.
  14. Do Carmo M. P.: Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications, 2016.
  15. Dey T. K., Kumar P.: A simple provable algorithm for curve reconstruction. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (USA, 1999), SODA ’99, Society for Industrial and Applied Mathematics, p. 893–894.
  16. Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics, part b (cybernetics) 26, 1 (1996), 29–41.
  17. Dey T., Wenger R.: Fast reconstruction of curves with sharp corners. Int. J. Comput. Geometry Appl. 12 (10 2002), 353–400. doi:10.1142/S0218195902000931.
  18. Voronoi-delaunay duality and delaunay meshes. In Proceedings of the 2007 ACM symposium on Solid and physical modeling (2007), pp. 415–420.
  19. European centre for medium-range weather forecasts. http://www.ecmwf.int/.
  20. Texturing & modeling: a procedural approach. Morgan Kaufmann, 2003.
  21. Federer H.: Curvature measures. Transactions of the American Mathematical Society 93, 3 (1959), 418–491.
  22. Eigen. URl: http://eigen. tuxfamily. org 3, 1 (2010).
  23. González-López M., Recio T.: Voronoi computability in SE(3). 12 1995, pp. 137–148. doi:10.1515/9783110881271.137.
  24. Computer-based, automatic recording and illustration of complex archaeological artifacts. Journal of Archaeological Science 40, 2 (2013), 1329–1339.
  25. Hart J. C.: Perlin noise pixel shaders. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware (2001), pp. 87–94.
  26. Surface reconstruction from unorganized point clouds.
  27. Hall B. C., Hall B. C.: Lie groups, Lie algebras, and representations. Springer, 2013.
  28. Iwama K., Nakashima T.: An improved exact algorithm for cubic graph tsp. In Computing and Combinatorics: 13th Annual International Conference, COCOON 2007, Banff, Canada, July 16-19, 2007. Proceedings 13 (2007), Springer, pp. 108–117.
  29. Inkscape Project: Inkscape. URL: https://inkscape.org.
  30. Johnson D. S., McGeoch L. A.: The traveling salesman problem: A case study in local optimization. Local search in combinatorial optimization 1, 1 (1997), 215–310.
  31. Karp R. M.: On the computational complexity of combinatorial problems. Networks 5, 1 (1975), 45–68.
  32. Poisson Surface Reconstruction. In Symposium on Geometry Processing (2006), Sheffer A., Polthier K., (Eds.), The Eurographics Association. doi:10.2312/SGP/SGP06/061-070.
  33. Klingenberg W.: Riemannian geometry, vol. 1. Walter de Gruyter, 1995.
  34. Demarcating curves for shape illustration. In ACM SIGGRAPH Asia 2008 papers. 2008, pp. 1–9.
  35. Kim J. K., Wang Z.: Sampling techniques for big data analysis. International Statistical Review 87 (2019), S177–S191.
  36. Constructing intrinsic delaunay triangulations from the dual of geodesic voronoi diagrams. ACM Trans. Graph. 36, 2 (apr 2017). URL: https://doi.org/10.1145/2999532, doi:10.1145/2999532.
  37. Efficient globally optimal 2d-to-3d deformable shape matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2185–2193.
  38. Newton’s fractals on surfaces via bicomplex algebra. In ACM SIGGRAPH 2022 Posters. 2022, pp. 1–2.
  39. Rematching: Low-resolution representations for scalable shape correspondence, 2024. arXiv:2305.09274.
  40. Mishra S., Granskog J.: CLIP-based Neural Neighbor Style Transfer for 3D Assets. In Eurographics 2023 - Short Papers (2023), Babaei V., Skouras M., (Eds.), The Eurographics Association. doi:10.2312/egs.20231006.
  41. A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics 3, 2 (2020), 85–101.
  42. McBride J. C., Kimia B. B.: Archaeological fragment reconstruction using curve-matching. In 2003 Conference on Computer Vision and Pattern Recognition Workshop (2003), vol. 1, IEEE, pp. 3–3.
  43. MoMaS: Mold Manifold Simulation for Real-time Procedural Texturing. Computer Graphics Forum (2022). doi:10.1111/cgf.14697.
  44. b/surf: Interactive bezier splines on surface meshes. IEEE Transactions on Visualization & Computer Graphics, 01 (may 2021), 1–1. doi:10.1109/TVCG.2022.3171179.
  45. Morita S.: Geometry of differential forms. No. 201. American Mathematical Soc., 2001.
  46. Sigdt: 2d curve reconstruction. Computer Graphics Forum 41, 7 (Oct. 2022), 25–36. URL: https://www.cg.tuwien.ac.at/research/publications/2022/marin-2022-sigdt/, doi:10.1111/cgf.14654.
  47. Mancinelli C., Puppo E.: Computing the riemannian center of mass on meshes. Computer Aided Geometric Design 103 (2023), 102203.
  48. Geotangle: Interactive design of geodesic tangle patterns on surfaces. ACM Trans. Graph. 41, 2 (nov 2021). URL: https://doi.org/10.1145/3487909, doi:10.1145/3487909.
  49. Ohrhallinger S., Mudur S.: An Efficient Algorithm for Determining an Aesthetic Shape Connecting Unorganized 2D Points. Computer Graphics Forum (2013). doi:10.1111/cgf.12162.
  50. Curve reconstruction with many fewer samples. Computer Graphics Forum 35 (08 2016), 167–176. doi:10.1111/cgf.12973.
  51. 2d points curve reconstruction survey and benchmark. In Computer Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 611–632.
  52. Peyré G., Cohen L. D.: Geodesic remeshing using front propagation. International Journal of Computer Vision 69 (2006), 145–156.
  53. Parakkat A. D., Muthuganapathy R.: Crawl through neighbors: A simple curve reconstruction algorithm. Computer Graphics Forum 35, 5 (2016), 177–186. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12974, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12974, doi:https://doi.org/10.1111/cgf.12974.
  54. Adidas tape: 3-d footwear concept design. In ACM SIGGRAPH 2018 Talks (New York, NY, USA, 2018), SIGGRAPH ’18, Association for Computing Machinery. URL: https://doi.org/10.1145/3214745.3214761, doi:10.1145/3214745.3214761.
  55. Genetic operators for combinatorial optimization in tsp and microarray gene ordering. Applied intelligence 26 (2007), 183–195.
  56. Visualization in meteorology—a survey of techniques and tools for data analysis tasks. IEEE Transactions on Visualization and Computer Graphics 24, 12 (2017), 3268–3296.
  57. Conjugate product graphs for globally optimal 2d-3d shape matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023), pp. 21866–21875.
  58. Ruppert J.: A new and simple algorithm for quality 2-dimensional mesh generation. In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms (1993), pp. 83–92.
  59. Shah P., Chatterji S.: On the curve reconstruction in riemannian manifolds: Ordering motion frames. Journal of mathematical imaging and vision 45 (2013), 55–68.
  60. Geometrycentral: A modern c++ library of data structures and algorithms for geometry processing.
  61. Sharp N., Crane K.: You can find geodesic paths in triangle meshes by just flipping edges. ACM Trans. Graph. 39, 6 (nov 2020). URL: https://doi.org/10.1145/3414685.3417839, doi:10.1145/3414685.3417839.
  62. Sathya N., Muthukumaravel A.: A review of the optimization algorithms on traveling salesman problem. Indian Journal of Science and Technology 8, 29 (2015), 1–4.
  63. Tal A.: 3d shape analysis for archaeology. In 3D Research Challenges in Cultural Heritage: A Roadmap in Digital Heritage Preservation. Springer, 2014, pp. 50–63.
  64. Feature identification in archaeological fragments using families of algebraic curves. In GCH (2016), pp. 93–96.
  65. Toussaint G. T.: A graph-theoretical primal sketch. In Machine Intelligence and Pattern Recognition, vol. 6. Elsevier, 1988, pp. 229–260.
  66. Turk G.: Texture synthesis on surfaces. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001), pp. 347–354.
  67. Wang X.: Intrinsic computation of voronoi diagrams on surfaces and its application, 2015. doi:10.32657/10356/65864.
  68. Watson D. F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes*. The Computer Journal 24, 2 (01 1981), 167–172. URL: https://doi.org/10.1093/comjnl/24.2.167, arXiv:https://academic.oup.com/comjnl/article-pdf/24/2/167/967258/240167.pdf, doi:10.1093/comjnl/24.2.167.
  69. Wei L.-Y., Levoy M.: Texture synthesis over arbitrary manifold surfaces. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001), pp. 355–360.
  70. Geometrically consistent elastic matching of 3d shapes: A linear programming solution. In 2011 International Conference on Computer Vision (2011), IEEE, pp. 2134–2141.
  71. Rethinking texture mapping. Computer Graphics Forum 38, 2 (2019), 535–551. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13656, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13656, doi:https://doi.org/10.1111/cgf.13656.
  72. Yao H. Q., Peng Z. G.: Feature extraction and redesign of bronze geometry patterns in shang and zhou dynasties of china. Int. J. Eng. Res. Technol 9, 2 (2020), 267–271.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com