Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SpamDam: Towards Privacy-Preserving and Adversary-Resistant SMS Spam Detection (2404.09481v1)

Published 15 Apr 2024 in cs.CR and cs.LG

Abstract: In this study, we introduce SpamDam, a SMS spam detection framework designed to overcome key challenges in detecting and understanding SMS spam, such as the lack of public SMS spam datasets, increasing privacy concerns of collecting SMS data, and the need for adversary-resistant detection models. SpamDam comprises four innovative modules: an SMS spam radar that identifies spam messages from online social networks(OSNs); an SMS spam inspector for statistical analysis; SMS spam detectors(SSDs) that enable both central training and federated learning; and an SSD analyzer that evaluates model resistance against adversaries in realistic scenarios. Leveraging SpamDam, we have compiled over 76K SMS spam messages from Twitter and Weibo between 2018 and 2023, forming the largest dataset of its kind. This dataset has enabled new insights into recent spam campaigns and the training of high-performing binary and multi-label classifiers for spam detection. Furthermore, effectiveness of federated learning has been well demonstrated to enable privacy-preserving SMS spam detection. Additionally, we have rigorously tested the adversarial robustness of SMS spam detection models, introducing the novel reverse backdoor attack, which has shown effectiveness and stealthiness in practical tests.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yekai Li (2 papers)
  2. Rufan Zhang (1 paper)
  3. Wenxin Rong (1 paper)
  4. Xianghang Mi (12 papers)

Summary

We haven't generated a summary for this paper yet.