Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback Communication Over the BSC with Sparse Feedback times and Causal Encoding (2404.09455v1)

Published 15 Apr 2024 in cs.IT and math.IT

Abstract: Posterior matching uses variable-length encoding of the message controlled by noiseless feedback of the received symbols to achieve high rates for short average blocklengths. Traditionally, the feedback of a received symbol occurs before the next symbol is transmitted. The transmitter optimizes the next symbol transmission with full knowledge of every past received symbol. To move posterior matching closer to practical communication, this paper seeks to constrain how often feedback can be sent back to the transmitter. We focus on reducing the frequency of the feedback while still maintaining the high rates that posterior matching achieves with feedback after every symbol. As it turns out, the frequency of the feedback can be reduced significantly with no noticeable reduction in rate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. 2, no. 3, pp. 8–19, September 1956.
  2. M. V. Burnashev, “Data transmission over a discrete channel with feedback. random transmission time,” Problemy Peredachi Inf., vol. 12, no. 4, pp. 10–30, 1976.
  3. M. Horstein, “Sequential transmission using noiseless feedback,” IEEE Trans. Inf. Theory, vol. 9, no. 3, pp. 136–143, July 1963.
  4. O. Shayevitz and M. Feder, “Optimal feedback communication via posterior matching,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1186–1222, March 2011.
  5. C. T. Li and A. E. Gamal, “An efficient feedback coding scheme with low error probability for discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 2953–2963, June 2015.
  6. M. Naghshvar, T. Javidi, and M. Wigger, “Extrinsic Jensen–Shannon divergence: Applications to variable-length coding,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 2148–2164, April 2015.
  7. J. H. Bae and A. Anastasopoulos, “A posterior matching scheme for finite-state channels with feedback,” in 2010 IEEE Int. Symp. Inf. Theory, 2010, pp. 2338–2342.
  8. V. Kostina, Y. Polyanskiy, and S. Verd, “Joint source-channel coding with feedback,” IEEE Trans. on Inf. Theory, vol. 63, no. 6, pp. 3502–3515, 2017.
  9. S. Kim, R. Ma, D. Mesa, and T. P. Coleman, “Efficient bayesian inference methods via convex optimization and optimal transport,” in 2013 IEEE Int. Symp. on Inf. Theory, 2013, pp. 2259–2263.
  10. O. Sabag, H. H. Permuter, and N. Kashyap, “Feedback capacity and coding for the bibo channel with a no-repeated-ones input constraint,” IEEE Tran. Inf. Theory, vol. 64, no. 7, pp. 4940–4961, 2018.
  11. L. V. Truong, “Posterior matching scheme for gaussian multiple access channel with feedback,” in 2014 IEEE Information Theory Workshop (ITW 2014), 2014, pp. 476–480.
  12. A. Anastasopoulos, “A sequential transmission scheme for unifilar finite-state channels with feedback based on posterior matching,” in 2012 IEEE Int. Symp. Inf. Theory, 2012, pp. 2914–2918.
  13. J. Schalkwijk, “A class of simple and optimal strategies for block coding on the binary symmetric channel with noiseless feedback,” IEEE Trans. Inf. Theory, vol. 17, no. 3, pp. 283–287, May 1971.
  14. J. Schalkwijk and K. Post, “On the error probability for a class of binary recursive feedback strategies,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 498–511, July 1973.
  15. A. Tchamkerten and E. Telatar, “A feedback strategy for binary symmetric channels,” in Proc. IEEE Int. Symp. Inf. Theory, June 2002, pp. 362–362.
  16. A. Tchamkerten and I. E. Telatar, “Variable length coding over an unknown channel,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2126–2145, May 2006.
  17. M. Naghshvar, M. Wigger, and T. Javidi, “Optimal reliability over a class of binary-input channels with feedback,” in 2012 IEEE Inf. Theory Workshop, Sep. 2012, pp. 391–395.
  18. A. Antonini, R. Gimelshein, and R. Wesel, “Achievable rates for low-complexity posterior matching over the binary symmetric channel,” IEEE transactions on information theory, pp. 1–1, 2023.
  19. H. Yang, M. Pan, A. Antonini, and R. D. Wesel, “Sequential transmission over binary asymmetric channels with feedback,” IEEE Tran. Inf. Theory, 2021. [Online]. Available: https://arxiv.org/abs/2111.15042
  20. A. Antonini, H. Yang, and R. D. Wesel, “Low complexity algorithms for transmission of short blocks over the bsc with full feedback,” in 2020 IEEE International Symposium on Information Theory (ISIT), 2020, pp. 2173–2178.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com