Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modular data of non-semisimple modular categories (2404.09314v3)

Published 14 Apr 2024 in math.QA

Abstract: We investigate non-semisimple modular categories with an eye towards a structure theory, low-rank classification, and applications to low dimensional topology and topological physics. We aim to extend the well-understood theory of semisimple modular categories to the non-semisimple case by using representations of factorizable ribbon Hopf algebras as a case study. We focus on the Cohen-Westreich modular data, which is obtained from the Lyubashenko-Majid modular representation restricted to the Higman ideal of a factorizable ribbon Hopf algebra. The Cohen-Westreich $S$-matrix diagonalizes the mixed fusion rules and reduces to the usual $S$-matrix for semisimple modular categories. The paper includes detailed studies on small quantum groups $U_qsl(2)$ and the Drinfeld doubles of Nichols Hopf algebras, especially the $\mathrm{SL}(2, \mathbb{Z})$-representation on their centers, Cohen-Westreich modular data, and the congruence kernel theorem's validity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. B. Bakalov and A. Kirillov, Jr. Lectures on tensor categories and modular functors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, 2001.
  2. Non-semisimple link and manifold invariants for symplectic fermions. arXiv preprint arXiv:2307.06069, 2023.
  3. Congruence subgroups and super-modular categories. Pacific J. Math., 296(2):257–270, 2018.
  4. Fermionic modular categories and the 16-fold way. J. Math. Phys., 58(4):041704, 31, 2017.
  5. Rank-finiteness for modular categories. J. Amer. Math. Soc., 29(3):857–881, 2016.
  6. M. Cohen and S. Westreich. Characters and a Verlinde-type formula for symmetric Hopf algebras. J. Algebra, 320(12):4300–4316, 2008.
  7. On arithmetic modular categories. arXiv preprint arXiv:1305.2229, 2013.
  8. Congruence property in conformal field theory. Algebra Number Theory, 9(9):2121–2166, 2015.
  9. V. G. Drinfeld. Almost cocommutative Hopf algebras. Algebra i Analiz, 1(2):30–46, 1989.
  10. S. Eilenberg and S. MacLane. Cohomology theory in abstract groups. I. Ann. of Math. (2), 48:51–78, 1947.
  11. S. Eilenberg and S. MacLane. Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel. Ann. of Math. (2), 48:326–341, 1947.
  12. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
  13. P. Etingof and V. Ostrik. Finite tensor categories. Mosc. Math. J., 4(3):627–654, 782–783, 2004.
  14. P. Etingof and V. Ostrik. On semisimplification of tensor categories. In Representation theory and algebraic geometry—a conference celebrating the birthdays of Sasha Beilinson and Victor Ginzburg, Trends Math., pages 3–35. Birkhäuser/Springer, Cham, 2022.
  15. The symplectic fermion ribbon quasi-Hopf algebra and the SL⁡(2,ℤ)SL2ℤ\operatorname{SL}(2,\mathbb{Z})roman_SL ( 2 , roman_ℤ )-action on its centre. Adv. Math., 400:108247, 2022.
  16. Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Comm. Math. Phys., 265(1):47–93, 2006.
  17. A. M. Gainutdinov and I. Runkel. Projective objects and the modified trace in factorisable finite tensor categories. Compos. Math., 156(4):770–821, 2020.
  18. The Kazhdan-Lusztig correspondence for the representation category of the triplet W𝑊Witalic_W-algebra in logorithmic conformal field theories. Teoret. Mat. Fiz., 148(3):398–427, 2006.
  19. A. Joyal and R. Street. Braided tensor categories. Adv. Math., 102(1):20–78, 1993.
  20. T. Kerler. Mapping class group actions on quantum doubles. Comm. Math. Phys., 168(2):353–388, 1995.
  21. T. Kerler. Homology TQFT’s and the Alexander-Reidemeister invariant of 3-manifolds via Hopf algebras and skein theory. Canad. J. Math., 55(4):766–821, 2003.
  22. A. Lachowska. On the center of the small quantum group. J. Algebra, 262(2):313–331, 2003.
  23. A. Lachowska and Y. Qi. Remarks on the derived center of small quantum groups. Selecta Math. (N.S.), 27(68), 2021.
  24. V. Lyubashenko and S. Majid. Braided groups and quantum Fourier transform. J. Algebra, 166(3):506–528, 1994.
  25. S.-H. Ng and P. Schauenburg. Congruence subgroups and generalized Frobenius-Schur indicators. Comm. Math. Phys., 300(1):1–46, 2010.
  26. On symmetric representations of SL2⁢(ℤ)subscriptSL2ℤ{\rm SL}_{2}(\mathbb{Z})roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℤ ). Proc. Amer. Math. Soc., 151(4):1415–1431, 2023.
  27. A. Nobs. Die irreduziblen Darstellungen der Gruppen SL2⁢(ℤp)subscriptSL2subscriptℤ𝑝\text{SL}_{2}(\mathbb{Z}_{p})SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℤ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), insbesondere SL2⁢(ℤ2)subscriptSL2subscriptℤ2\text{SL}_{2}(\mathbb{Z}_{2})SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). I. Comment. Math. Helv., 51(4):465–489, 1976.
  28. F. Panaite and F. Van Oystaeyen. Quasitriangular structures for some pointed Hopf algebras of dimension 2nsuperscript2𝑛2^{n}2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Commun. Algebra, 27(10):4929–4942, 1999.
  29. J. Ricci and Z. Wang. Congruence subgroups from representations of the three-strand braid group. J. Algebra, 487:93–117, 2017.
  30. E. C. Rowell and Z. Wang. Mathematics of topological quantum computing. Bull. Amer. Math. Soc. (N.S.), 55(2):183–238, 2018.
  31. K. Shimizu. Non-degeneracy conditions for braided finite tensor categories. Adv. Math., 355:106778, 36, 2019.
  32. J. E. Tener and Z. Wang. On classification of extremal non-holomorphic conformal field theories. J. Phys. A, 50(11):115204, 22, 2017.
  33. V. G. Turaev. Quantum Invariants of Knots and 3-Manifolds. De Gruyter, Berlin, Boston, 2016.
  34. Z. Wang. Topological quantum computation, volume 112 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com