Modular data of non-semisimple modular categories (2404.09314v3)
Abstract: We investigate non-semisimple modular categories with an eye towards a structure theory, low-rank classification, and applications to low dimensional topology and topological physics. We aim to extend the well-understood theory of semisimple modular categories to the non-semisimple case by using representations of factorizable ribbon Hopf algebras as a case study. We focus on the Cohen-Westreich modular data, which is obtained from the Lyubashenko-Majid modular representation restricted to the Higman ideal of a factorizable ribbon Hopf algebra. The Cohen-Westreich $S$-matrix diagonalizes the mixed fusion rules and reduces to the usual $S$-matrix for semisimple modular categories. The paper includes detailed studies on small quantum groups $U_qsl(2)$ and the Drinfeld doubles of Nichols Hopf algebras, especially the $\mathrm{SL}(2, \mathbb{Z})$-representation on their centers, Cohen-Westreich modular data, and the congruence kernel theorem's validity.
- B. Bakalov and A. Kirillov, Jr. Lectures on tensor categories and modular functors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, 2001.
- Non-semisimple link and manifold invariants for symplectic fermions. arXiv preprint arXiv:2307.06069, 2023.
- Congruence subgroups and super-modular categories. Pacific J. Math., 296(2):257–270, 2018.
- Fermionic modular categories and the 16-fold way. J. Math. Phys., 58(4):041704, 31, 2017.
- Rank-finiteness for modular categories. J. Amer. Math. Soc., 29(3):857–881, 2016.
- M. Cohen and S. Westreich. Characters and a Verlinde-type formula for symmetric Hopf algebras. J. Algebra, 320(12):4300–4316, 2008.
- On arithmetic modular categories. arXiv preprint arXiv:1305.2229, 2013.
- Congruence property in conformal field theory. Algebra Number Theory, 9(9):2121–2166, 2015.
- V. G. Drinfeld. Almost cocommutative Hopf algebras. Algebra i Analiz, 1(2):30–46, 1989.
- S. Eilenberg and S. MacLane. Cohomology theory in abstract groups. I. Ann. of Math. (2), 48:51–78, 1947.
- S. Eilenberg and S. MacLane. Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel. Ann. of Math. (2), 48:326–341, 1947.
- Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
- P. Etingof and V. Ostrik. Finite tensor categories. Mosc. Math. J., 4(3):627–654, 782–783, 2004.
- P. Etingof and V. Ostrik. On semisimplification of tensor categories. In Representation theory and algebraic geometry—a conference celebrating the birthdays of Sasha Beilinson and Victor Ginzburg, Trends Math., pages 3–35. Birkhäuser/Springer, Cham, 2022.
- The symplectic fermion ribbon quasi-Hopf algebra and the SL(2,ℤ)SL2ℤ\operatorname{SL}(2,\mathbb{Z})roman_SL ( 2 , roman_ℤ )-action on its centre. Adv. Math., 400:108247, 2022.
- Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Comm. Math. Phys., 265(1):47–93, 2006.
- A. M. Gainutdinov and I. Runkel. Projective objects and the modified trace in factorisable finite tensor categories. Compos. Math., 156(4):770–821, 2020.
- The Kazhdan-Lusztig correspondence for the representation category of the triplet W𝑊Witalic_W-algebra in logorithmic conformal field theories. Teoret. Mat. Fiz., 148(3):398–427, 2006.
- A. Joyal and R. Street. Braided tensor categories. Adv. Math., 102(1):20–78, 1993.
- T. Kerler. Mapping class group actions on quantum doubles. Comm. Math. Phys., 168(2):353–388, 1995.
- T. Kerler. Homology TQFT’s and the Alexander-Reidemeister invariant of 3-manifolds via Hopf algebras and skein theory. Canad. J. Math., 55(4):766–821, 2003.
- A. Lachowska. On the center of the small quantum group. J. Algebra, 262(2):313–331, 2003.
- A. Lachowska and Y. Qi. Remarks on the derived center of small quantum groups. Selecta Math. (N.S.), 27(68), 2021.
- V. Lyubashenko and S. Majid. Braided groups and quantum Fourier transform. J. Algebra, 166(3):506–528, 1994.
- S.-H. Ng and P. Schauenburg. Congruence subgroups and generalized Frobenius-Schur indicators. Comm. Math. Phys., 300(1):1–46, 2010.
- On symmetric representations of SL2(ℤ)subscriptSL2ℤ{\rm SL}_{2}(\mathbb{Z})roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℤ ). Proc. Amer. Math. Soc., 151(4):1415–1431, 2023.
- A. Nobs. Die irreduziblen Darstellungen der Gruppen SL2(ℤp)subscriptSL2subscriptℤ𝑝\text{SL}_{2}(\mathbb{Z}_{p})SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℤ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), insbesondere SL2(ℤ2)subscriptSL2subscriptℤ2\text{SL}_{2}(\mathbb{Z}_{2})SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). I. Comment. Math. Helv., 51(4):465–489, 1976.
- F. Panaite and F. Van Oystaeyen. Quasitriangular structures for some pointed Hopf algebras of dimension 2nsuperscript2𝑛2^{n}2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Commun. Algebra, 27(10):4929–4942, 1999.
- J. Ricci and Z. Wang. Congruence subgroups from representations of the three-strand braid group. J. Algebra, 487:93–117, 2017.
- E. C. Rowell and Z. Wang. Mathematics of topological quantum computing. Bull. Amer. Math. Soc. (N.S.), 55(2):183–238, 2018.
- K. Shimizu. Non-degeneracy conditions for braided finite tensor categories. Adv. Math., 355:106778, 36, 2019.
- J. E. Tener and Z. Wang. On classification of extremal non-holomorphic conformal field theories. J. Phys. A, 50(11):115204, 22, 2017.
- V. G. Turaev. Quantum Invariants of Knots and 3-Manifolds. De Gruyter, Berlin, Boston, 2016.
- Z. Wang. Topological quantum computation, volume 112 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010.