Logic in Mathematics and Computer Science (2404.09033v2)
Abstract: Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert's consistency program. Similar efforts continue, but have been expanded by the development of sophisticated methods to study the properties of such systems using proof and model theory. In parallel with this evolution of logical formalisms as tools for articulating mathematical theories (broadly speaking), much progress has been made in the quest for a mechanization of logical inference and the investigation of its theoretical limits, culminating recently in the development of new foundational frameworks for mathematics with sophisticated computer-assisted proof systems. In addition, logical formalisms developed by logicians in mathematical and philosophical contexts have proved immensely useful in describing theories and systems of interest to computer scientists, and to some degree, vice versa. Three examples of the influence of logic in computer science are automated reasoning, computer verification, and type systems for programming languages.
- Ordinal Analysis with an Introduction to Proof Theory. Logic in Asia: Studia Logica Library. Singapore: Springer. doi:10.1007/978-981-15-6459-8.
- The mechanization of mathematics. Notices of the American Mathematical Society 65(06): 681–690. doi:10.1090/noti1688.
- Mathematics and the formal turn. Bulletin of the American Mathematical Society doi:10.1090/bull/1832. In press.
- The epsilon calculus. In Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta. Metaphysics Research Lab, Stanford University, fall 2020 ed. URL https://plato.stanford.edu/archives/fall2020/entries/epsilon-calculus/.
- Univalent foundations and the large-scale formalization of mathematics. The Institute Letter Summer 2013: 1, 6. URL https://www.ias.edu/ideas/2013/awodey-coquand-univalent-foundations.
- Voevodsky’s univalence axiom in homotopy type theory. Notices of the American Mathematical Society 60(09): 1164. doi:10.1090/noti1043.
- Diophantine problems over local fields I. American Journal of Mathematics 87(3): 605–630. doi:10.2307/2373065.
- Description logics. In Foundations of Artificial Intelligence, eds. Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, Handbook of Knowledge Representation, vol. 3, 135–179. Amsterdam: Elsevier. doi:10.1016/S1574-6526(07)03003-9.
- Lambda Calculus with Types. Perspectives in Logic. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139032636.
- Semantic entailment and formal derivability. Mededelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde 18(13): 309–342.
- Reasoning with ontologies. In A Guided Tour of Artificial Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning, eds. Pierre Marquis, Odile Papini, and Henri Prade, 185–215. Cham: Springer International Publishing. doi:10.1007/978-3-030-06164-7_6.
- Logicism, neo-logicism, and the logics of abstraction. In The Oxford Handbook of Philosophy of Logic, eds. Elke Brendel, Massimiliano Carrara, Filippo Ferrari, Ole Hjortland, Gil Sagi, Gila Sher, and Florian Steinberger., ???–??? Oxford: Oxford University Press.
- First-order proof theory of arithmetic. In Handbook of Proof Theory, ed. Samuel R. Buss, no. 137 in Studies in Logic and the Foundations of Mathematics, 79–147. Amsterdam: Elsevier. doi:10.1016/S0049-237X(98)80017-7.
- Philosophy and Model Theory. Oxford University Press. doi:10.1093/oso/9780198790396.001.0001.
- Abriss der Logistik. Vienna: Springer.
- A note on the Entscheidungsproblem. Journal of Symbolic Logic 1(1): 40–41. doi:10.2307/2269326.
- A formulation of the simple theory of types. The Journal of Symbolic Logic 5(2): 56–68. doi:10.2307/2266170.
- Design and synthesis of synchronization skeletons using branching time temporal logic. In Logics of Programs, ed. Dexter Kozen, Lecture Notes in Computer Science, 52–71. Berlin, Heidelberg: Springer. doi:10.1007/BFb0025774.
- Un systeme de communication homme-machine en français. Rapport preliminaire, groupe intelligence artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II.
- The birth of Prolog. In History of Programming Languages—II, 331–367. New York, NY, USA: Association for Computing Machinery. doi:10.1145/234286.1057820.
- Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall.
- Frege’s logic. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Metaphysics Research Lab, Stanford University, spring 2023 ed. URL https://plato.stanford.edu/archives/spr2023/entries/frege-logic/.
- Type theory. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Metaphysics Research Lab, Stanford University, fall 2022 ed. URL https://plato.stanford.edu/entries/type-theory/.
- The calculus of constructions. Information and Computation 76(2): 95–120. doi:10.1016/0890-5401(88)90005-3.
- A machine program for theorem-proving. Communications of the ACM 5(7): 394–397. doi:10.1145/368273.368557.
- A computing procedure for quantification theory. Journal of the ACM 7(3): 201–215. doi:10.1145/321033.321034.
- The mathematical language AUTOMATH, its usage, and some of its extensions. In Symposium on Automatic Demonstration, eds. M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger, 29–61. Berlin, Heidelberg: Springer. doi:10.1007/BFb0060623.
- The Lean theorem prover (system description). In Automated Deduction CADE-25, eds. Amy P. Felty and Aart Middeldorp, Lecture Notes in Computer Science, 378–388. Cham: Springer. doi:10.1007/978-3-319-21401-6_26.
- The Lean 4 theorem prover and programming language. In Automated Deduction CADE 28, eds. André Platzer and Geoff Sutcliffe, Lecture Notes in Computer Science, 625–635. Cham: Springer. doi:10.1007/978-3-030-79876-5_37.
- Computational complexity theory and the philosophy of mathematics. Philosophia Mathematica 27(3): 381–439. doi:10.1093/philmat/nkz021.
- Computational complexity theory. In The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta. Metaphysics Research Lab, Stanford University, fall 2021 ed. URL https://plato.stanford.edu/archives/fall2021/entries/computational-complexity/.
- The prehistory of the subsystems of second-order arithmetic. The Review of Symbolic Logic 10(2): 357–396. doi:10.1017/S1755020316000411.
- On the completeness of quantification theory. Proceedings of the National Academy of Sciences 38(12): 1047–1052. doi:10.1073/pnas.38.12.1047.
- Reverse mathematics. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Metaphysics Research Lab, Stanford University, summer 2024 ed. URL https://plato.stanford.edu/archives/sum2024/entries/reverse-mathematics/.
- Computer verification for historians of philosophy. Synthese 200(3): 198. doi:10.1007/s11229-022-03678-y.
- ”Sometimes” and ”not never” revisited: On branching versus linear time (preliminary report). In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’83, 127–140. New York: Association for Computing Machinery. doi:10.1145/567067.567081.
- Belief, awareness, and limited reasoning. Artificial Intelligence 34(1): 39–76. doi:10.1016/0004-3702(87)90003-8.
- Reasoning about Knowledge. Cambridge, MA: MIT Press.
- Hilbert’s Program relativized: Proof-theoretical and foundational reductions. The Journal of Symbolic Logic 53(2): 364–384. doi:10.1017/S0022481200028310.
- What rests on what? The proof-theoretic analysis of mathematics. In Akten Des 15. Internationalen Wittgenstein-Symposiums: 16. Bis 23. August 1992, Kirchberg Am Wechsel, vol. 1, 147–171. Vienna: Hölder-Pichler-Tempsky.
- Why a little bit goes a long way: Logical foundations of scientifically applicable mathematics. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992(2): 442–455. doi:10.1086/psaprocbienmeetp.1992.2.192856.
- First-Order Logic and Automated Theorem Proving. New York: Springer. doi:10.1007/978-1-4612-2360-3.
- Assigning meanings to programs. In Mathematical Aspects of Computer Science, no. 19 in Proceedings of Symposia in Applied Mathematics, 19–32. Providence, RI: American Mathematical Society.
- Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert. Reprinted in Frege (1993), translated in (van Heijenoort, 1967, pp. 1–82).
- Die Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: Koebner. URL http://archive.org/details/diegrundlagender48312gut. Translation in Frege (1953).
- Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet. Jena: Pohle. Translation in Frege (2013).
- Foundations of Arithmetic, ed. J. L. Austin. Oxford: Basil Blackwell & Mott, 2nd ed.
- Begriffsschrift und andere Aufsätze, ed. Ignacio Angelelli. Hildesheim: Olms, 2nd ed.
- Basic Laws of Arithmetic, eds. Philip A. Ebert and Marcus Rossberg. Oxford, New York: Oxford University Press.
- Untersuchungen über das logische Schließen I–II. Mathematische Zeitschrift 39(1): 176–210, 405–431. doi:10.1007/BF01201353. English translation in (Gentzen, 1969, pp. 68–131).
- The Collected Papers of Gerhard Gentzen, ed. Manfred E. Szabo. Amsterdam: North-Holland.
- Une extension de l’interpretation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types. In Proceedings of the second Scandinavian logic symposium, ed. Jens Erik Fenstad, no. 63 in Studies in logic and the foundations of mathematics, 63–92. Amsterdam: North-Holland. doi:10.1016/S0049-237X(08)70843-7.
- Linear logic. Theoretical Computer Science 50(1): 1–101. doi:10.1016/0304-3975(87)90045-4.
- Proofs and Types. New York: Cambridge University Press.
- Über eine bisher noch nicht benütze Erweiterung des finiten Standpunktes. Dialectica 12(3–4): 280–287. doi:10.1111/j.1746-8361.1958.tb01464.x. Reprinted and translated in (Gödel, 1990, pp. 217–251).
- Collected Works: Publications 1938–1974, eds. Solomon Feferman et al. No. 2 in Collected Works. Oxford: Oxford University Press.
- The undecidability of the second-order unification problem. Theoretical Computer Science 13(2): 225–230. doi:10.1016/0304-3975(81)90040-2.
- Formal proof—the four- color theorem. Notices of the American Mathematical Society 55(11): 1382–1393.
- From LCF to HOL: A short history. In Proof, Language, and Interaction: Essays in Honour of Robin Milner, 169–185. Cambridge, MA: MIT Press.
- The Reason’s Proper Study. Essays towards a Neo-Fregean Philosophy of Mathematics. Oxford: Oxford University Press.
- A formal proof of the Kepler conjecture. Forum of Mathematics, Pi 5: e2. doi:10.1017/fmp.2017.1.
- On the unusual effectiveness of logic in computer science. Bulletin of Symbolic Logic 7(2): 213–236. doi:10.2307/2687775.
- History of interactive theorem proving. In Handbook of the History of Logic, vol. 9, 135–214. Amsterdam: Elsevier. doi:10.1016/B978-0-444-51624-4.50004-6.
- Recherches sur la théorie de la démonstration. Ph.D. thesis, University of Paris. Reprinted in (Herbrand, 1968, 36–153). English translation in (Herbrand, 1971, 44–202).
- Écrits logiques. Paris: Presses universitaires de France.
- Logical Writings, ed. Warren D. Goldfarb. Harvard University Press.
- Grundlagen Der Mathematik, vol. 2. Berlin: Springer.
- An axiomatic basis for computer programming. Communications of the ACM 12(10): 576–580. doi:10.1145/363235.363259.
- Model Theory. Cambridge: Cambridge University Press.
- Model theory. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Metaphysics Research Lab, Stanford University, fall 2023 ed. URL https://plato.stanford.edu/archives/fall2023/entries/model-theory/.
- The formulae-as-types notion of construction. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, eds. Jonathan P. Seldin and J. R. Hindley, 480–490. London and New York: Academic Press.
- Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511810275.
- On the rules of suppositions in formal logic. Studia Logica 1: 5–31. Warsaw: Seminarjum Filozoficzne. Wydz. Matematyczno-.
- Tense logic and the theory of linear order. Ph.D. thesis, University of California, Los Angeles, Los Angeles. URL https://www.proquest.com/docview/302320357/citation/204FB0B21AFA47CAPQ/1.
- Introduction to Metamathematics. Amsterdam: North-Holland.
- Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer Monographs in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-77533-1.
- Kreisel’s “shift of emphasis” and contemporary proof mining. Studies in Logic 16(3): 1–35. URL https://studiesinlogic.sysu.edu.cn/files/2023-07/1674%C2%AD3202(2023)%C2%AD03%C2%AD0001%C2%AD35.pdf.
- First-order theorem proving and Vampire. In Computer Aided Verification CAV 2013, eds. Natasha Sharygina and Helmut Veith, 1–35. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-39799-8_1.
- Predicate calculus as a programming language. In Information Processing: Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974, ed. Jack L. Rosenfeld, 569–574. Amsterdam: North-Holland.
- On the interpretation of non-finitist proofs: Part II: Interpretation of number theory, applications. The Journal of Symbolic Logic 17(1): 43–58. doi:10.2307/2267457.
- The Resolution Calculus. Berlin: Springer. doi:10.1007/978-3-642-60605-2.
- A Survey of Symbolic Logic. Berkeley: University of California Press.
- Principia Mathematica. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Metaphysics Research Lab, Stanford University, spring 2024 ed. URL https://plato.stanford.edu/archives/spr2024/entries/principia-mathematica/.
- On the categoricity in power of elementary deductive systems and some related problems. Colloquium Mathematicum 3: 58–62. doi:10.4064/cm-3-1-58-62.
- Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken. The Journal of Symbolic Logic 54(1): 234–263. doi:10.2307/2275028.
- O logice trójwartościowej. Ruch Filozoficzny 6: 170–171. English translation in Łukasiewicz (1970).
- On three-valued logic. In Selected Works, ed. Ludwik Borkowski, no. 11 in Studies in Logic and the Foundations of Mathematics, 87–88. Amsterdam: North-Holland.
- Computation and Reasoning: A Type Theory for Computer Science. Oxford: Oxford University Press.
- An Introduction to Proof Theory: Normalization, Cut-Elimination, and Consistency Proofs. Oxford: Oxford University Press. doi:10.1093/oso/9780192895936.001.0001.
- The development of mathematical logic from Russell to Tarski: 1900–1935. In The Development of Modern Logic, ed. Leila Haaparanta, 324–478. New York and Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780195137316.003.0029.
- Model Theory: An Introduction. New York: Springer. doi:10.1007/b98860.
- The philosophy of logical practice. Metaphilosophy 53(2-3): 267–283. doi:10.1111/meta.12552.
- The practice-based approach to the philosophy of logic. In The Oxford Handbook of Philosophy of Logic, eds. Elke Brendel, Massimiliano Carrara, Filippo Ferrari, Ole Hjortland, Gil Sagi, Gila Sher, and Florian Steinberger, ???–??? Oxford: Oxford University Press.
- Anti-exceptionalism about logic as tradition rejection. Synthese 200(2): 148. doi:10.1007/s11229-022-03653-7.
- An intuitionistic theory of types: Predicative part. In Studies in Logic and the Foundations of Mathematics, eds. H. E. Rose and J. C. Shepherdson, Logic Colloquium ’73, vol. 80, 73–118. Elsevier. doi:10.1016/S0049-237X(08)71945-1.
- Constructive mathematics and computer programming. In Logic, Methodology and Philosophy of Science VI. Proceedings of the Sixth International Congress of Logic, Methodology, and Philosophy of Science, Hannover, 1979, eds. L. Jonathan Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski, no. 104 in Studies in Logic and the Foundations of Mathematics, 153–175. Amsterdam: North-Holland. doi:10.1016/S0049-237X(09)70189-2.
- Intuitionistic Type Theory. Naples: Bibliopolis.
- Prover9 and Mace4. URL https://www.cs.unm.edu/~mccune/prover9/.
- Logic for computable functions: Description of a machine implementation. Tech. Rep. STAN-CS-72-288, Stanford University, Computer Science Department, Stanford. doi:10.21236/AD0785072.
- The logic theory machine: A complex information processing system. IRE Transactions on Information Theory 2(3): 61–79. doi:10.1109/TIT.1956.1056797.
- Towards a practical programming language based on dependent type theory. Ph.D. thesis, Chalmers University of Technology, Göteborg.
- λμ𝜆𝜇\lambda\muitalic_λ italic_μ-calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming and Automated Reasoning, no. 624 in Lecture Notes in Computer Science, 190–201. Berlin: Springer. doi:10.1007/BFb0013061.
- The foundation of a generic theorem prover. Journal of Automated Reasoning 5(3): 363–397. doi:10.1007/BF00248324.
- From LCF to Isabelle/HOL. Formal Aspects of Computing 31(6): 675–698. doi:10.1007/s00165-019-00492-1.
- Types and Programming Languages. Cambridge, MA: MIT Press.
- The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), 46–57. IEEE Press. doi:10.1109/SFCS.1977.32.
- The temporal semantics of concurrent programs. Theoretical Computer Science 13(1): 45–60. doi:10.1016/0304-3975(81)90110-9.
- Proof Theory: The First Step into Impredicativity. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-69319-2.
- Semantical considerations on Floyd-Hoare logic. In 17th Annual Symposium on Foundations of Computer Science (SFCS 1976), 109–121. IEEE Press. doi:10.1109/SFCS.1976.27.
- An improved proof procedure. Theoria 26(2): 102–139. doi:10.1111/j.1755-2567.1960.tb00558.x.
- A mechanical proof procedure and its realization in an electronic computer. Journal of the ACM 7(2): 102–128. doi:10.1145/321021.321023.
- Past, Present and Future. Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780198243113.001.0001.
- A proof procedure for quantification theory. Journal of Symbolic Logic 20(2): 141–149. doi:10.2307/2266900.
- Proof theory. In The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta. Metaphysics Research Lab, Stanford University, fall 2023 ed. URL https://plato.stanford.edu/entries/proof-theory/.
- Temporal Logic. No. 3 in Library of Exact Philosophy. Vienna: Springer. doi:10.1007/978-3-7091-7664-1.
- Towards a theory of type structure. In Programming Symposium: Proceedings, Colloque Sur La Programmation, Paris, April 9–11, 1974, ed. B. Robinet, no. 19 in Lecture Notes in Computer Science, 408–425. Berlin: Springer. doi:10.1007/3-540-06859-7_148.
- Non-Standard Analysis. Amsterdam: North-Holland.
- A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1): 23–41. doi:10.1145/321250.321253.
- Faster, higher, stronger: E 2.3. In Automated Deduction CADE 27, ed. Pascal Fontaine, LNAI 11716, 495–507. Cham: Springer. doi:10.1007/978-3-030-29436-6_29.
- Proofs and Computations. Perspectives in Logic. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139031905.
- A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science 121(1): 411–440. doi:10.1016/0304-3975(93)90095-B.
- A symbolic analysis of relay and switching circuits. Electrical Engineering 57(12): 713–723. doi:10.1109/EE.1938.6431064.
- Subsystems of Second Order Arithmetic. Cambridge: Cambridge University Press, 2nd ed.
- Lectures on the Curry-Howard Isomorphism. No. 149 in Studies in Logic and the Foundations of Mathematics. New York: Elsevier.
- Über den Begriff der logischen Folgerung. In Actes Du Congrès International de Philosophie Scientifique 7, Actualités Scientifiques et Industrielles, 1–11. Paris: Herman. English translation in.
- A Decision Method for Elementary Algebra and Geometry. Berkeley: University of California Press.
- Informationslogische Sprache MIZAR. Tech. Rep. 33, Technische Hochschule Ilmenau, Ilmenau.
- On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings of the London Mathematical Society, 2nd Series 42: 230–265.
- Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study. URL https://homotopytypetheory.org/book.
- From Frege to Gödel: A Source Book in Mathematical Logic, 1897–1931. Cambridge, MA: Harvard University Press.
- Applications of the Löwenheim–Skolem–Tarski theorem to problems of completeness and decidability. Indagationes Mathematicae (Proceedings) 57: 467–472. doi:10.1016/S1385-7258(54)50058-2.
- Toward mechanical mathematics. IBM Journal of Research and Development 4(1): 2–22. doi:10.1147/rd.41.0002.
- Principia Mathematica. Cambridge: Cambridge University Press. Three volumes.
- Applications of deontic logic in computer science: A concise overview. In Deontic Logic in Computer Science: Normative System Specification, 17–40. Wiley.
- The significance of the Curry-Howard isomorphism. In Philosophy of Logic and Mathematics. Proceedings of the 41st International Ludwig Wittgenstein Symposium, eds. Gabriele M. Mras, Paul Weingartner, and Bernhard Ritter, no. 26 in Publications of the Austrian Ludwig Wittgenstein Society, New Series, 313–325. Berlin: De Gruyter. doi:10.1515/9783110657883-018.
- Hilbert’s program. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Winter 2023 ed. URL https://plato.stanford.edu/archives/win2023/entries/hilbert-program.
- Frege’s theorem and foundations for arithmetic. In The Stanford Encyclopedia of Philosophy, eds. Edward N. Zalta and Uri Nodelman. Metaphysics Research Lab, Stanford University, fall 2023 ed. URL https://plato.stanford.edu/archives/fall2023/entries/frege-theorem/.