Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivalence of regular spinor fields (2404.09013v2)

Published 13 Apr 2024 in hep-th

Abstract: In the Lounesto classification, there are three types of regular spinors. They are classified by the condition that at least one of the scalar or pseudo scalar norms are non-vanishing. The Dirac spinors are regular spinors because their scalar and pseudo scalar norms are non-zero and zero respectively. We construct local and Lorentz-covariant fermionic fields from all three classes of regular spinors. By computing the invariants and bilinear covariants of the regular spinor fields, we show that they are physically equivalent to the Dirac fields in the sense that whatever interactions one writes down using the regular spinor fields, they can always be expressed in terms of the Dirac fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. \NameDirac P. A. M. \REVIEWProc. Roy. Soc. Lond. A1171928610.
  2. \NameAhluwalia D. V. Grumiller D. \REVIEWJCAP05072005012.
  3. \NameAhluwalia D. V. Grumiller D. \REVIEWPhys. Rev.D722005067701.
  4. \Nameda Rocha R. Rodrigues, Jr. W. A. \REVIEWMod. Phys. Lett. A21200665.
  5. \NameLounesto P. \BookClifford algebras and spinors Vol. 286 2001.
  6. \NameHoff da Silva J. M. da Rocha R. \REVIEWPhys. Lett. B71820131519.
  7. \NameCavalcanti R. T. \REVIEWInt. J. Mod. Phys. D2320141444002.
  8. \NameBonora L., de Brito K. P. S. da Rocha R. \REVIEWJHEP022015069.
  9. \NameFabbri L. da Rocha R. \REVIEWPhys. Lett. B7802018427.
  10. \NameHoff da Silva J. M. Cavalcanti R. T. \REVIEWMod. Phys. Lett. A3220171730032.
  11. \NameLee C.-Y. \REVIEWEur. Phys. J. C81202190.
  12. \NameArcodía M. R. A., Bellini M. da Rocha R. a. \REVIEWEur. Phys. J. C792019260.
  13. \NameFabbri L. Rogerio R. J. B. \REVIEWEur. Phys. J. C802020880.
  14. \NameRogerio R. J. B. \REVIEWMod. Phys. Lett. A3620212150093.
  15. \NameRogerio R. J. B. Coronado Villalobos C. H. \REVIEWPhys. Lett. A4982024129348.
  16. \NameAhluwalia D. V., da Silva J. M. H. Lee C.-Y. \REVIEWNucl. Phys. B9872023116092.
  17. \NameWigner E. P. \REVIEWAnnals Math.401939149.
  18. \NameWeinberg S. \BookThe Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press) 2005.

Summary

We haven't generated a summary for this paper yet.