Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fourier-enhanced multi-modal 3D small object optical mark recognition and positioning method for percutaneous abdominal puncture surgical navigation (2404.08990v1)

Published 13 Apr 2024 in cs.CV, cs.AI, and cs.RO

Abstract: Navigation for thoracoabdominal puncture surgery is used to locate the needle entry point on the patient's body surface. The traditional reflective ball navigation method is difficult to position the needle entry point on the soft, irregular, smooth chest and abdomen. Due to the lack of clear characteristic points on the body surface using structured light technology, it is difficult to identify and locate arbitrary needle insertion points. Based on the high stability and high accuracy requirements of surgical navigation, this paper proposed a novel method, a muti-modal 3D small object medical marker detection method, which identifies the center of a small single ring as the needle insertion point. Moreover, this novel method leverages Fourier transform enhancement technology to augment the dataset, enrich image details, and enhance the network's capability. The method extracts the Region of Interest (ROI) of the feature image from both enhanced and original images, followed by generating a mask map. Subsequently, the point cloud of the ROI from the depth map is obtained through the registration of ROI point cloud contour fitting. In addition, this method employs Tukey loss for optimal precision. The experimental results show this novel method proposed in this paper not only achieves high-precision and high-stability positioning, but also enables the positioning of any needle insertion point.

Summary

We haven't generated a summary for this paper yet.