Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Gradient Computation for Gromov-Wasserstein Distance (2404.08970v1)

Published 13 Apr 2024 in cs.LG

Abstract: The Gromov-Wasserstein distance is a notable extension of optimal transport. In contrast to the classic Wasserstein distance, it solves a quadratic assignment problem that minimizes the pair-wise distance distortion under the transportation of distributions and thus could apply to distributions in different spaces. These properties make Gromov-Wasserstein widely applicable to many fields, such as computer graphics and machine learning. However, the computation of the Gromov-Wasserstein distance and transport plan is expensive. The well-known Entropic Gromov-Wasserstein approach has a cubic complexity since the matrix multiplication operations need to be repeated in computing the gradient of Gromov-Wasserstein loss. This becomes a key bottleneck of the method. Currently, existing methods accelerate the computation focus on sampling and approximation, which leads to low accuracy or incomplete transport plan. In this work, we propose a novel method to accelerate accurate gradient computation by dynamic programming techniques, reducing the complexity from cubic to quadratic. In this way, the original computational bottleneck is broken and the new entropic solution can be obtained with total quadratic time, which is almost optimal complexity. Furthermore, it can be extended to some variants easily. Extensive experiments validate the efficiency and effectiveness of our method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets