Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProSecutor: Protecting Mobile AIGC Services on Two-Layer Blockchain via Reputation and Contract Theoretic Approaches (2404.08899v1)

Published 13 Apr 2024 in cs.NI

Abstract: Mobile AI-Generated Content (AIGC) has achieved great attention in unleashing the power of generative AI and scaling the AIGC services. By employing numerous Mobile AIGC Service Providers (MASPs), ubiquitous and low-latency AIGC services for clients can be realized. Nonetheless, the interactions between clients and MASPs in public mobile networks, pertaining to three key mechanisms, namely MASP selection, payment scheme, and fee-ownership transfer, are unprotected. In this paper, we design the above mechanisms using a systematic approach and present the first blockchain to protect mobile AIGC, called ProSecutor. Specifically, by roll-up and layer-2 channels, ProSecutor forms a two-layer architecture, realizing tamper-proof data recording and atomic fee-ownership transfer with high resource efficiency. Then, we present the Objective-Subjective Service Assessment (OS{2}A) framework, which effectively evaluates the AIGC services by fusing the objective service quality with the reputation-based subjective experience of the service outcome (i.e., AIGC outputs). Deploying OS{2}A on ProSecutor, firstly, the MASP selection can be realized by sorting the reputation. Afterward, the contract theory is adopted to optimize the payment scheme and help clients avoid moral hazards in mobile networks. We implement the prototype of ProSecutor on BlockEmulator.Extensive experiments demonstrate that ProSecutor achieves 12.5x throughput and saves 67.5\% storage resources compared with BlockEmulator. Moreover, the effectiveness and efficiency of the proposed mechanisms are validated.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, C. Miao, Xuemin, Shen, and A. Jamalipour, “Blockchain-empowered lifecycle management for ai-generated content (aigc) products in edge networks,” IEEE Wireless Communications, accepted, 2023.
  2. Acumen projection for the global aigc market size. 2023. [Online]. Available: https://www.acumenresearchandconsulting.com/generative-ai-market
  3. S. Verma, T. K. Rodrigues, Y. Kawamoto, and N. Kato, “A survey on multi-ap coordination approaches over emerging wlans: Future directions and open challenges,” 2023. [Online]. Available: https://arxiv.org/abs/2306.04164
  4. Google on-device stable diffusion. 2023. [Online]. Available: https://developers.google.com/mediapipe
  5. Y.-H. Chen, R. Sarokin, J. Lee, J. Tang, C.-L. Chang, A. Kulik, and M. Grundmann, “Speed is all you need: On-device acceleration of large diffusion models via gpu-aware optimizations,” in IEEE/CVF CVPR, 2023, pp. 4650–4654.
  6. M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han, A. Jamalipour, D. I. Kim, Xuemin, Shen, V. C. M. Leung, and H. V. Poor, “Unleashing the power of edge-cloud generative ai in mobile networks: A survey of aigc services,” IEEE Communications Surveys and Tutorials, accepted, 2024.
  7. H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, and H. Huang, “Generative ai-aided optimization for ai-generated content (aigc) services in edge networks,” IEEE Transactions on Mobile Computing, accepted, 2024.
  8. A. A. Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun, M. G. Martini, and L. Atzori, “Qoe management of multimedia streaming services in future networks: A tutorial and survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 526–565, 2020.
  9. M. A. Usman, S. Y. Shin, M. Shahid, and B. Lövström, “A no reference video quality metric based on jerkiness estimation focusing on multiple frame freezing in video streaming,” IETE Technical Review, vol. 34, no. 3, pp. 309–320, 2017.
  10. G. Bingöl, S. Porcu, A. Floris, and L. Atzori, “Qoe estimation of webrtc-based audiovisual conversations from facial expressions,” in SITIS, 2022, pp. 577–584.
  11. S. Porcu, A. Floris, J.-N. Voigt-Antons, L. Atzori, and S. Möller, “Estimation of the quality of experience during video streaming from facial expression and gaze direction,” IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2702–2716, 2020.
  12. Pytorch library for image quality assessment. 2023. [Online]. Available: https://pypi.org/project/piq/0.5.1/
  13. Y. Tao, J. Qiu, and S. Lai, “Deep reinforcement learning based bidding strategy for evas in local energy market considering information asymmetry,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3831–3842, 2022.
  14. Y. Wasa, K. Hirata, and K. Uchida, “A contract theory approach to dynamic incentive mechanism and control synthesis for moral hazard in power grids,” IEEE Transactions on Control Systems Technology, vol. 30, no. 5, pp. 2072–2083, 2022.
  15. The discrete choice modeling. 2023. [Online]. Available: https://en.wikipedia.org/wiki/Choice_modelling
  16. J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 700–10 714, 2019.
  17. L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using rollups: A comprehensive survey,” IEEE Access, vol. 10, pp. 93 039–93 054, 2022.
  18. J. Zhang, Y. Ye, W. Wu, and X. Luo, “Boros: Secure and efficient off-blockchain transactions via payment channel hub,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1, pp. 407–421, 2023.
  19. The world’s first on-device diffusion. 2023. [Online]. Available: https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
  20. Y. Li, H. Wang, Q. Jin, J. Hu, P. Chemerys, Y. Fu, Y. Wang, S. Tulyakov, and J. Ren, “Snapfusion: Text-to-image diffusion model on mobile devices within two seconds,” 2023. [Online]. Available: https://arxiv.org/abs/2306.00980
  21. M. M. Bradley and P. J. Lang, “Measuring emotion: The self-assessment manikin and the semantic differential,” Journal of Behavior Therapy and Experimental Psychiatry, vol. 25, no. 1, pp. 49–59, 1994.
  22. M. S. Sara Vlahovic and L. Skorin-Kapov, “A survey of challenges and methods for quality of experience assessment of interactive vr applications,” Journal on Multimodal User Interfaces, vol. 16, pp. 257–291, 2022.
  23. The introduction to weber-fechner_law. 2023. [Online]. Available: https://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law
  24. H. Talebi and P. Milanfar, “Nima: Neural image assessment,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 3998–4011, 2018.
  25. J. Li, J. Wu, L. Chen, J. Li, and S.-K. Lam, “Blockchain-based secure key management for mobile edge computing,” IEEE Transactions on Mobile Computing, vol. 22, no. 1, pp. 100–114, 2023.
  26. C. T. Nguyen, D. N. Nguyen, D. T. Hoang, H.-A. Pham, N. H. Tuong, Y. Xiao, and E. Dutkiewicz, “Blockroam: Blockchain-based roaming management system for future mobile networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 11, pp. 3880–3894, 2022.
  27. S. Yao, M. Wang, Q. Qu, Z. Zhang, Y.-F. Zhang, K. Xu, and M. Xu, “Blockchain-empowered collaborative task offloading for cloud-edge-device computing,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 12, pp. 3485–3500, 2022.
  28. B. An, M. Xiao, A. Liu, Y. Xu, X. Zhang, and Q. Li, “Secure crowdsensed data trading based on blockchain,” IEEE Transactions on Mobile Computing, vol. 22, no. 3, pp. 1763–1778, 2023.
  29. L. Xue, W. Yang, W. Chen, and L. Huang, “Stbc: A novel blockchain-based spectrum trading solution,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 1, pp. 13–30, 2022.
  30. Y. Liu, K. Wang, Y. Lin, and W. Xu, “𝖫𝗂𝗀𝗁𝗍𝖢𝗁𝖺𝗂𝗇𝖫𝗂𝗀𝗁𝗍𝖢𝗁𝖺𝗂𝗇\mathsf{LightChain}sansserif_LightChain: A lightweight blockchain system for industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3571–3581, 2019.
  31. S. Verma, Y. Kawamoto, and N. Kato, “A smart internet-wide port scan approach for improving iot security under dynamic wlan environments,” IEEE Internet of Things Journal, vol. 9, no. 14, pp. 11 951–11 961, 2022.
  32. M. U. Zaman, T. Shen, and M. Min, “Proof of sincerity: A new lightweight consensus approach for mobile blockchains,” in IEEE CCNC, 2019, pp. 1–4.
  33. C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, “Making big data open in edges: A resource-efficient blockchain-based approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 4, pp. 870–882, 2019.
  34. A. Asheralieva and D. Niyato, “Reputation-based coalition formation for secure self-organized and scalable sharding in iot blockchains with mobile-edge computing,” IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11 830–11 850, 2020.
  35. Q. Wang, C. Zhang, L. Wei, and Y. Xie, “Hyperchannel: A secure layer-2 payment network for large-scale iot ecosystem,” in IEEE ICC, 2021, pp. 1–6.
  36. A. Asheralieva and D. Niyato, “Learning-based mobile edge computing resource management to support public blockchain networks,” IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 1092–1109, 2021.
  37. S. Jiang, X. Li, and J. Wu, “Multi-leader multi-follower stackelberg game in mobile blockchain mining,” IEEE Transactions on Mobile Computing, vol. 21, no. 6, pp. 2058–2071, 2022.
  38. S. Verma, Y. Kawamoto, and N. Kato, “Energy-efficient group paging mechanism for qos constrained mobile iot devices over lte-a pro networks under 5g,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9187–9199, 2019.
  39. M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” in ACM CCS, 2018, p. 931–948.
  40. E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via sharding,” in IEEE SP, 2018, pp. 583–598.
  41. S. Verma, Y. Kawamoto, and N. Kato, “A network-aware internet-wide scan for security maximization of ipv6-enabled wlan iot devices,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8411–8422, 2021.
  42. Y. Liu, K. Qian, K. Wang, and L. He, “Effective scaling of blockchain beyond consensus innovations and moore’s law: Challenges and opportunities,” IEEE Systems Journal, vol. 16, no. 1, pp. 1424–1435, 2022.
  43. Introduction ipfs. 2023. [Online]. Available: https://docs.ipfs.tech/concepts/what-is-ipfs/
  44. S. Li, Y. Zhang, C. Xu, N. Cheng, Z. Liu, Y. Du, and X. Shen, “Healthfort: A cloud-based ehealth system with conditional forward transparency and secure provenance via blockchain,” IEEE Transactions on Mobile Computing, pp. 1–18, 2022.
  45. I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-NG: A scalable blockchain protocol,” in 13th USENIX NSDI, 2016, pp. 45–59.
  46. The copyright of aigc products. 2023. [Online]. Available: https://docs.midjourney.com/docs/terms-of-service
  47. F. Wilhelmi, S. Barrachina-Muñoz, and P. Dini, “End-to-end latency analysis and optimal block size of proof-of-work blockchain applications,” IEEE Communications Letters, vol. 26, no. 10, pp. 2332–2335, 2022.
  48. A. Donmez and A. Karaivanov, “Transaction fee economics in the ethereum blockchain,” Economic Inquiry, vol. 60, no. 1, pp. 265–292, 2022.
  49. J. Guo, Z. Jiang, L. Li, and J. Bian, “Mathematical modeling of transaction latency on ethereum,” in IEEE JCC, 2021, pp. 34–37.
  50. The introduction to little’s law. 2023. [Online]. Available: https://en.wikipedia.org/wiki/Little%27s_law
  51. The introduction to gamma function. 2023. [Online]. Available: https://www.britannica.com/science/gamma-function
  52. Introduction to heaviside step function. 2023. [Online]. Available: https://en.wikipedia.org/wiki/Heaviside_step_function
  53. Y. Wang, J. Yang, T. Li, F. Zhu, and X. Zhou, “Anti-dust: A method for identifying and preventing blockchain’s dust attacks,” in ICISCAE, 2018, pp. 274–280.
  54. H. Du, J. Liu, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and D. I. Kim, “Attention-aware resource allocation and qoe analysis for metaverse xurllc services,” IEEE Journal on Selection Areas in Communications, accepted, 2023.
  55. The effects of lora on aigc product perceivable experience. 2023. [Online]. Available: https://softwarekeep.com/help-center/how-to-use-stable-diffusion-lora-models
  56. E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large language models,” in International Conference on Learning Representations, 2022.
  57. C. Dai, K. Zhu, C. Yi, and E. Hossain, “Decoupled uplink-downlink association in full-duplex cellular networks: A contract-theory approach,” IEEE Transactions on Mobile Computing, vol. 21, no. 3, pp. 911–925, 2022.
  58. H. Hasselt, “Double q-learning,” in Advances in Neural Information Processing Systems, vol. 23, 2010, pp. 2613–2621.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Yinqiu Liu (28 papers)
  2. Hongyang Du (154 papers)
  3. Dusit Niyato (671 papers)
  4. Jiawen Kang (204 papers)
  5. Zehui Xiong (177 papers)
  6. Abbas Jamalipour (68 papers)
  7. Xuemin (104 papers)
  8. Shen (108 papers)
Citations (1)