Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Routing and Spectrum Allocation in Broadband Quantum Entanglement Distribution (2404.08744v3)

Published 12 Apr 2024 in cs.NI, cs.ET, and quant-ph

Abstract: We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single broadband quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing and spectrum allocation scheme for distributing entangled photon pairs over such a network. As our setting allows separately solving the routing and spectrum allocation problems, we first find an optimal polynomial-time routing algorithm. We then employ max-min fairness criterion for spectrum allocation, which presents an NP-hard problem. Thus, we focus on approximately-optimal schemes. We compare their performance by evaluating the max-min and median number of EPR-pair rates assigned by them, and the associated Jain index. We identify two polynomial-time approximation algorithms that perform well, or better than others under these metrics. We also investigate scalability by analyzing how the network size and connectivity affect performance using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves higher minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and computational resources are considered. Additionally, we evaluate the effect of the source node placement on the performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. R. Bali, A. Tittelbaugh, S. L. Jenkins, A. Agrawal, J. Horgan, M. Ruffini, D. Kilper, and B. A. Bash, “Routing and spectrum allocation in broadband degenerate epr-pair distribution,” in Proc. IEEE Int. Conf. Commun. (ICC), 2024.
  2. A. Singh, K. Dev, H. Siljak, H. D. Joshi, and M. Magarini, “Quantum internet—applications, functionalities, enabling technologies, challenges, and research directions,” IEEE Commun. Surv. Tutor., vol. 23, no. 4, pp. 2218–2247, 2021.
  3. K. C. Chen, P. Dhara, M. Heuck, Y. Lee, W. Dai, S. Guha, and D. Englund, “Zero-added-loss entangled-photon multiplexing for ground- and space-based quantum networks,” Phys. Rev. Appl., vol. 19, p. 054029, May 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.19.054029
  4. J. Suurballe and R. Tarjan, “A quick method for finding shortest pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.
  5. S. Banerjee, R. Ghosh, and A. Reddy, “Parallel algorithm for shortest pairs of edge-disjoint paths,” J. Parallel Distrib. Comput., vol. 33, no. 2, p. 165–171, Mar. 1996. [Online]. Available: https://doi.org/10.1006/jpdc.1996.0035
  6. B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: A tutorial,” IEEE Commun. Surv. Tutor., vol. 17, no. 3, pp. 1776–1800, 2015.
  7. J. Yu, Y. Li, M. Bhopalwala, S. Das, M. Ruffini, and D. C. Kilper, “Midhaul transmission using edge data centers with split phy processing and wavelength reassignment for 5g wireless networks,” in 2018 Int. Conf. Opt. Netw. Des. Model. (ONDM), 2018, pp. 178–183.
  8. Y. Li, M. Bhopalwala, S. Das, J. Yu, W. Mo, M. Ruffini, and D. C. Kilper, “Joint optimization of bbu pool allocation and selection for c-ran networks,” in 2018 Opt. Fiber Commun. Conf. Exhib. (OFC), 2018, pp. 1–3.
  9. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. [Online]. Available: https://doi.org/10.1038/30918
  10. S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Sci. Rep., vol. 6, no. 1, p. 20463, 2016.
  11. M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” Npj Quantum Inf., vol. 5, no. 1, p. 25, 2019.
  12. A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, “Entanglement generation in a quantum network at distance-independent rate,” Npj Quantum Inf., vol. 8, no. 1, p. 51, 2022.
  13. Y. Wang, X. Yu, Y. Zhao, A. Nag, and J. Zhang, “Pre-established entanglement distribution algorithm in quantum networks,” JIEEE J. Opt. Commun. Netw. (JOCN), vol. 14, no. 12, pp. 1020–1033, 2022.
  14. N. K. Panigrahy, M. G. De Andrade, S. Pouryousef, D. Towsley, and L. Tassiulas, “Scalable multipartite entanglement distribution in quantum networks,” in 2023 IEEE Int. Conf. of Quantum Comput. Eng. (QCE), vol. 2.   IEEE, 2023, pp. 391–392.
  15. E. Kaur and S. Guha, “Distribution of entanglement in two-dimensional square grid network,” in 2023 IEEE Int. Conf. of Quantum Comput. Eng. (QCE), vol. 1.   IEEE, 2023, pp. 1154–1164.
  16. E. Sutcliffe and A. Beghelli, “Multi-user entanglement distribution in quantum networks using multipath routing,” IEEE Trans. Quantum Eng. (TQE), 2023.
  17. E. A. Van Milligen, E. Jacobson, A. Patil, G. Vardoyan, D. Towsley, and S. Guha, “Entanglement routing over networks with time multiplexed repeaters,” arXiv preprint arXiv:2308.15028, 2023.
  18. W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, “Field experiment on a “star type” metropolitan quantum key distribution network,” IEEE Photon. Technol. Lett., vol. 21, no. 9, pp. 575–577, 2009.
  19. S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature, vol. 564, no. 7735, pp. 225–228, 2018. [Online]. Available: https://doi.org/10.1038/s41586-018-0766-y
  20. E. Y. Zhu, C. Corbari, A. Gladyshev, P. G. Kazansky, H.-K. Lo, and L. Qian, “Toward a reconfigurable quantum network enabled by a broadband entangled source,” J. Opt. Soc. Am. B, vol. 36, no. 3, pp. B1–B6, Mar. 2019. [Online]. Available: https://opg.optica.org/josab/abstract.cfm?URI=josab-36-3-B1
  21. R. Wang, O. Alia, M. J. Clark, S. Bahrani, S. K. Joshi, D. Aktas, G. T. Kanellos, M. Peranić, M. Lončarić, M. Stipčević, J. Rarity, R. Nejabati, and D. Simeonidou, “A dynamic multi-protocol entanglement distribution quantum network,” in 2022 Opt. Fiber Commun. Conf. Exhib. (OFC), 2022, pp. 1–3.
  22. P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, “Contentionless twin 8×24 wss with low insertion loss,” in 2018 Opt. Fiber Commun. Conf. Exhib. (OFC), 2018, pp. 1–3.
  23. “Optical loss & testing overview — kingfisher international.” https://kingfisherfiber.com/application-notes/optical-loss-testing-overview, accessed: Oct. 11, 2023.
  24. R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi, “On approximately fair allocations of indivisible goods,” in Proceedings of the 5th ACM Conference on Electronic Commerce, ser. EC ’04.   New York, NY, USA: Association for Computing Machinery, 2004, p. 125–131. [Online]. Available: https://doi.org/10.1145/988772.988792
  25. H. Aziz, I. Caragiannis, A. Igarashi, and T. Walsh, “Fair allocation of indivisible goods and chores,” Auton. Agents and Multi-Agent Syst., vol. 36, no. 1, p. 3, 2021. [Online]. Available: https://doi.org/10.1007/s10458-021-09532-8
  26. R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math., vol. 17, no. 2, pp. 416–429, 1969. [Online]. Available: http://www.jstor.org/stable/2099572
  27. B. L. Deuermeyer, D. K. Friesen, and M. A. Langston, “Scheduling to maximize the minimum processor finish time in a multiprocessor system,” SIAM J. Algebr. Discrete Methods, vol. 3, no. 2, pp. 190–196, 1982. [Online]. Available: https://doi.org/10.1137/0603019
  28. B. Y. Wu, “An analysis of the lpt algorithm for the max–min and the min–ratio partition problems,” Theor. Comput. Sci., vol. 349, no. 3, pp. 407–419, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304397505005815
  29. I. Bezáková and V. Dani, “Allocating indivisible goods,” SIGecom Exch., vol. 5, no. 3, p. 11–18, apr 2005. [Online]. Available: https://doi.org/10.1145/1120680.1120683
  30. J. Kleinberg and E. Tardos, “A first application: The bipartite matching problem,” in Algorithm Design.   USA: Addison-Wesley Longman Publishing Co., Inc., 2005, pp. 367–373.
  31. R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measurement of fairness and discrimination for resource allocation in shared computer system,” Eastern Research Laboratory, Digital Equipment Corporation: Hudson, MA, USA, vol. 2, 1984.

Summary

We haven't generated a summary for this paper yet.