Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stable decoupled perfectly matched layer for the 3D wave equation using the nodal discontinuous Galerkin method (2404.08464v1)

Published 12 Apr 2024 in math.NA, cs.NA, math-ph, and math.MP

Abstract: In outdoor acoustics, the calculations of sound propagating in air can be computationally heavy if the domain is chosen large enough to fulfil the Sommerfeld radiation condition. By strategically truncating the computational domain with a efficient boundary treatment, the computational cost is lowered. One commonly used boundary treatment is the perfectly matched layer (PML) that dampens outgoing waves without polluting the computed solution in the inner domain. The purpose of this study is to propose and assess a new perfectly matched layer formulation for the 3D acoustic wave equation, using the nodal discontinuous Galerkin finite element method. The formulation is based on an efficient PML formulation that can be decoupled to further increase the computational efficiency and guarantee stability without sacrificing accuracy. This decoupled PML formulation is demonstrated to be long-time stable and an optimization procedure of the damping functions is proposed to enhance the performance of the formulation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets