Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing (2404.08444v1)

Published 12 Apr 2024 in cs.LG

Abstract: In vehicle edge computing (VEC), asynchronous federated learning (AFL) is used, where the edge receives a local model and updates the global model, effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles, renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model, and the vehicle may also be affected by Byzantine attacks, leading to the deterioration of the vehicle data. However, based on deep reinforcement learning (DRL), we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL. At the same time, when aggregating AFL, we can focus on those vehicles with better performance to improve the accuracy and safety of the system. In this paper, we proposed a vehicle selection scheme based on DRL in VEC. In this scheme, vehicle s mobility, channel conditions with temporal variations, computational resources with temporal variations, different data amount, transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. W. Wang, F. Xia, H. Nie, Z. Chen, Z. Gong, X. Kong, and W. Wei, “Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3567–3576, 2020.
  2. B. Yin, Y. Wu, T. Hu, J. Dong, and Z. Jiang, “An efficient collaboration and incentive mechanism for internet of vehicles (iov) with secured information exchange based on blockchains,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 1582–1593, 2019.
  3. J. Zhao, Q. Li, X. Ma, and F. R. Yu, “Computation offloading for edge intelligence in two-tier heterogeneous networks,” IEEE Transactions on Network Science and Engineering, 2023.
  4. A. Cardaillac and M. Ludvigsen, “A communication interface for multilayer cloud computing architecture for low cost underwater vehicles,” IFAC-PapersOnLine, vol. 55, no. 14, pp. 77–82, 2022.
  5. S. Zhang and N. Ansari, “Latency aware 3d placement and user association in drone-assisted heterogeneous networks with fso-based backhaul,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11 991–12 000, 2021.
  6. J. Lee and W. Na, “A survey on vehicular edge computing architectures,” in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC).   IEEE, 2022, pp. 2198–2200.
  7. Y.-J. Ku, P.-H. Chiang, and S. Dey, “Real-time qos optimization for vehicular edge computing with off-grid roadside units,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 975–11 991, 2020.
  8. Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan, and K. B. Letaief, “Delay-sensitive task offloading in vehicular fog computing-assisted platoons,” IEEE Transactions on Network and Service Management, 2023.
  9. X. Yuan, J. Chen, N. Zhang, X. Fang, and D. Liu, “A federated bidirectional connection broad learning scheme for secure data sharing in internet of vehicles,” China Communications, vol. 18, no. 7, pp. 117–133, 2021.
  10. B. Gu, A. Xu, Z. Huo, C. Deng, and H. Huang, “Privacy-preserving asynchronous vertical federated learning algorithms for multiparty collaborative learning,” IEEE transactions on neural networks and learning systems, vol. 33, no. 11, pp. 6103–6115, 2021.
  11. Q. Wu, Y. Zhao, Q. Fan, P. Fan, J. Wang, and C. Zhang, “Mobility-aware cooperative caching in vehicular edge computing based on asynchronous federated and deep reinforcement learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 17, no. 1, pp. 66–81, 2022.
  12. Q. Wu, S. Xia, P. Fan, Q. Fan, and Z. Li, “Velocity-adaptive v2i fair-access scheme based on ieee 802.11 dcf for platooning vehicles,” Sensors, vol. 18, no. 12, p. 4198, 2018.
  13. Q. Wu, W. Wang, P. Fan, Q. Fan, J. Wang, and K. B. Letaief, “Urllc-awared resource allocation for heterogeneous vehicular edge computing,” IEEE Transactions on Vehicular Technology, 2024.
  14. W. Qiong, S. Shuai, W. Ziyang, F. Qiang, F. Pingyi, and Z. Cui, “Towards v2i age-aware fairness access: a dqn based intelligent vehicular node training and test method,” Chinese Journal of Electronics, vol. 32, no. 6, pp. 1230–1244, 2023.
  15. J. Zhao, X. Xiong, Q. Zhang, and D. Wang, “Extended multi-component gated recurrent graph convolutional network for traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  16. X. Chen, W. Wei, Q. Yan, N. Yang, and J. Huang, “Time-delay deep q-network based retarder torque tracking control framework for heavy-duty vehicles,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 149–161, 2022.
  17. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, “Selective federated learning for on-road services in internet-of-vehicles,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021, pp. 1–6.
  18. N. Plewtong and B. DeBruhl, “Game theoretic analysis of a byzantine attacker in vehicular mix-zones,” in Decision and Game Theory for Security: 9th International Conference, GameSec 2018, Seattle, WA, USA, October 29–31, 2018, Proceedings 9.   Springer, 2018, pp. 277–295.
  19. Q. Wu, X. Wang, Q. Fan, P. Fan, C. Zhang, and Z. Li, “High stable and accurate vehicle selection scheme based on federated edge learning in vehicular networks,” China Communications, vol. 20, no. 3, pp. 1–17, 2023.
  20. Y. Chu, Z. Wei, X. Fang, S. Chen, and Y. Zhou, “A multiagent federated reinforcement learning approach for plug-in electric vehicle fleet charging coordination in a residential community,” IEEE Access, vol. 10, pp. 98 535–98 548, 2022.
  21. L. Liu, Z. Xi, K. Zhu, R. Wang, and E. Hossain, “Mobile charging station placements in internet of electric vehicles: A federated learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 24 561–24 577, 2022.
  22. F. Liang, Q. Yang, R. Liu, J. Wang, K. Sato, and J. Guo, “Semi-synchronous federated learning protocol with dynamic aggregation in internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 4677–4691, 2022.
  23. X. Kong, H. Gao, G. Shen, G. Duan, and S. K. Das, “Fedvcp: A federated-learning-based cooperative positioning scheme for social internet of vehicles,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 197–206, 2021.
  24. X. Li, L. Lu, W. Ni, A. Jamalipour, D. Zhang, and H. Du, “Federated multi-agent deep reinforcement learning for resource allocation of vehicle-to-vehicle communications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8810–8824, 2022.
  25. C. Li, Y. Zhang, and Y. Luo, “A federated learning-based edge caching approach for mobile edge computing-enabled intelligent connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 3360–3369, 2022.
  26. S. R. Pokhrel and J. Choi, “Improving tcp performance over wifi for internet of vehicles: A federated learning approach,” IEEE transactions on vehicular technology, vol. 69, no. 6, pp. 6798–6802, 2020.
  27. X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, “Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5308–5317, 2021.
  28. P. Lv, L. Xie, J. Xu, X. Wu, and T. Li, “Misbehavior detection in vehicular ad hoc networks based on privacy-preserving federated learning and blockchain,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 3936–3948, 2022.
  29. T. Zeng, O. Semiari, M. Chen, W. Saad, and M. Bennis, “Federated learning on the road autonomous controller design for connected and autonomous vehicles,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 10 407–10 423, 2022.
  30. C. Pan, Z. Wang, H. Liao, Z. Zhou, X. Wang, M. Tariq, and S. Al-Otaibi, “Asynchronous federated deep reinforcement learning-based urllc-aware computation offloading in space-assisted vehicular networks,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  31. K. Bedda, Z. M. Fadlullah, and M. M. Fouda, “Efficient wireless network slicing in 5g networks: An asynchronous federated learning approach,” in 2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS).   IEEE, 2022, pp. 285–289.
  32. Z. Liu, C. Guo, D. Liu, and X. Yin, “An asynchronous federated learning arbitration model for low-rate ddos attack detection,” IEEE Access, vol. 11, pp. 18 448–18 460, 2023.
  33. Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q. Quek, “Asynchronous federated learning over wireless communication networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 6961–6978, 2022.
  34. H.-S. Lee and J.-W. Lee, “Adaptive transmission scheduling in wireless networks for asynchronous federated learning,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3673–3687, 2021.
  35. Q. Wu, S. Wang, P. Fan, and Q. Fan, “Deep reinforcement learning based vehicle selection for asynchronous federated learning enabled vehicular edge computing,” in International Congress on Communications, Networking, and Information Systems.   Springer, 2023, pp. 3–26.
  36. A. Vedant, A. Yadav, S. Sharma, O. Thite, and A. Sheikh, “A practical byzantine fault tolerance blockchain for securing vehicle-to-grid energy trading,” in 2022 Global Energy Conference (GEC).   IEEE, 2022, pp. 288–293.
  37. X. Ma, Q. Jiang, M. Shojafar, M. Alazab, S. Kumar, and S. Kumari, “Disbezant: secure and robust federated learning against byzantine attack in iot-enabled mts,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2492–2502, 2022.
  38. A. Sheikh, V. Kamuni, A. Urooj, S. Wagh, N. Singh, and D. Patel, “Secured energy trading using byzantine-based blockchain consensus,” IEEE Access, vol. 8, pp. 8554–8571, 2019.
  39. Q. Wang, T. Ji, Y. Guo, L. Yu, X. Chen, and P. Li, “Trafficchain: A blockchain-based secure and privacy-preserving traffic map,” IEEE Access, vol. 8, pp. 60 598–60 612, 2020.
  40. Y. Huang, J. Wang, C. Jiang, H. Zhang, and V. C. Leung, “Vehicular network based reliable traffic density estimation,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).   IEEE, 2016, pp. 1–5.
  41. J.-H. Chen, M.-R. Chen, G.-Q. Zeng, and J.-S. Weng, “Bdfl: A byzantine-fault-tolerance decentralized federated learning method for autonomous vehicle,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 8639–8652, 2021.
  42. J.-w. Xu, K. Ota, M.-x. Dong, A.-f. Liu, and Q. Li, “Siotfog: Byzantine-resilient iot fog networking,” Frontiers of information technology & electronic engineering, vol. 19, no. 12, pp. 1546–1557, 2018.
  43. J. Wang, Y. Huang, Z. Feng, C. Jiang, H. Zhang, and V. C. Leung, “Reliable traffic density estimation in vehicular network,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6424–6437, 2018.
  44. M. Fang, J. Liu, N. Z. Gong, and E. S. Bentley, “Aflguard: Byzantine-robust asynchronous federated learning,” in Proceedings of the 38th Annual Computer Security Applications Conference, 2022, pp. 632–646.
  45. D. Long, Q. Wu, Q. Fan, P. Fan, Z. Li, and J. Fan, “A power allocation scheme for mimo-noma and d2d vehicular edge computing based on decentralized drl,” Sensors, vol. 23, no. 7, p. 3449, 2023.
  46. J. Zhao, H. Quan, M. Xia, and D. Wang, “Adaptive resource allocation for mobile edge computing in internet of vehicles: A deep reinforcement learning approach,” IEEE Transactions on Vehicular Technology, 2023.
  47. Q. Wu, Z. Zhang, H. Zhu, P. Fan, Q. Fan, H. Zhu, and J. Wang, “Deep reinforcement learning-based power allocation for minimizing age of information and energy consumption in multi-input multi-output and non-orthogonal multiple access internet of things systems,” Sensors, vol. 23, no. 24, p. 9687, 2023.
  48. Q. Wu, S. Shi, Z. Wan, Q. Fan, P. Fan, and C. Zhang, “Towards v2i age-aware fairness access: A dqn based intelligent vehicular node training and test method,” Chinese Journal of Electronics, vol. 32, no. 6, pp. 1230–1244, 2023.
  49. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser mimo systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436–1449, 2013.
  50. S. Zhang, T. Cai, D. Wu, D. Schupke, N. Ansari, and C. Cavdar, “Iort data collection with leo satellite-assisted and cache-enabled uav: A deep reinforcement learning approach,” IEEE Transactions on Vehicular Technology, 2023.
  51. D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy gradient algorithms,” in International conference on machine learning.   Pmlr, 2014, pp. 387–395.
  52. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets