Optimization-Based System Identification and Moving Horizon Estimation Using Low-Cost Sensors for a Miniature Car-Like Robot (2404.08362v2)
Abstract: This paper presents an open-source miniature car-like robot with low-cost sensing and a pipeline for optimization-based system identification, state estimation, and control. The overall robotics platform comes at a cost of less than \$\,700 and thus significantly simplifies the verification of advanced algorithms in a realistic setting. We present a modified bicycle model with Pacejka tire forces to model the dynamics of the considered all-wheel drive vehicle and to prevent singularities of the model at low velocities. Furthermore, we provide an optimization-based system identification approach and a moving horizon estimation (MHE) scheme. In extensive hardware experiments, we show that the presented system identification approach results in a model with high prediction accuracy, while the MHE results in accurate state estimates. Finally, the overall closed-loop system is shown to perform well even in the presence of sensor failure for limited time intervals. All hardware, firmware, and control and estimation software is released under a BSD 2-clause license to promote widespread adoption and collaboration within the community.
- S. Zhou, L. Brunke, A. Tao, A. W. Hall, F. P. Bejarano, J. Panerati, and A. P. Schoellig, “What is the impact of releasing code with publications? statistics from the machine learning, robotics, and control communities,” arXiv preprint arXiv:2308.10008, 2023.
- J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Lariviere, A. Beygelzimer, F. d’Alche Buc, E. Fox, and H. Larochelle, “Improving reproducibility in machine learning research(a report from the neurips 2019 reproducibility program),” Journal of Machine Learning Research, vol. 22, no. 164, pp. 1–20, 2021.
- J. P. How, “Control systems reproducibility challenge [from the editor],” IEEE Control Systems Magazine, vol. 38, no. 4, pp. 3–4, 2018.
- A. Carron, S. Bodmer, L. Vogel, R. Zurbrügg, D. Helm, R. Rickenbach, S. Muntwiler, J. Sieber, and M. N. Zeilinger, “Chronos and CRS: Design of a miniature car-like robot and a software framework for single and multi-agent robotics and control,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1371–1378, 2023.
- A. Taffanel, B. Rousselot, J. Danielsson, K. McGuire, K. Richardsson, M. Eliasson, T. Antonsson, and W. Hönig, “Lighthouse Positioning System: Dataset, Accuracy, and Precision for UAV Research,” arXiv preprint arXiv:2104.11523, 2021.
- L. Spannagl, E. Hampp, A. Carron, J. Sieber, C. A. Pascucci, A. U. Zgraggen, A. Domahidi, and M. N. Zeilinger, “Design, optimal guidance and control of a low-cost re-usable electric model rocket,” in Proc. Int. Conf. Intell. Robots Syst. (IROS), pp. 6344–6351, 2021.
- R. Rickenbach, J. Köhler, A. Scampicchio, M. N. Zeilinger, and A. Carron, “Active learning-based model predictive coverage control,” IEEE Trans. Autom. Contr., pp. 1–16, 2024.
- D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt, “The robotarium: A remotely accessible swarm robotics research testbed,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1699–1706, 2017.
- B. Chalaki, L. E. Beaver, A. I. Mahbub, H. Bang, and A. A. Malikopoulos, “A research and educational robotic testbed for real-time control of emerging mobility systems: From theory to scaled experiments [applications of control],” IEEE Control Systems Magazine, vol. 42, no. 6, pp. 20–34, 2022.
- N. Buckman, A. Hansen, S. Karaman, and D. Rus, “Evaluating autonomous urban perception and planning in a 1/10th scale minicity,” Sensors, vol. 22, p. 6793, 2022.
- N. Hyldmar, Y. He, and A. Prorok, “A fleet of miniature cars for experiments in cooperative driving,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3238–3244, 2019.
- M. Kloock, P. Scheffe, J. Maczijewski, A. Kampmann, A. Mokhtarian, S. Kowalewski, and B. Alrifaee, “Cyber-physical mobility lab: An open-source platform for networked and autonomous vehicles,” in Proc. Europ. Contr. Conf. (ECC), pp. 1937–1944, 2021.
- S. Wilson, R. Gameros, M. Sheely, M. Lin, K. Dover, R. Gevorkyan, M. Haberland, A. Bertozzi, and S. Berman, “Pheeno, a versatile swarm robotic research and education platform,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 884–891, 2016.
- J. Dong, Q. Xu, J. Wang, C. Yang, M. Cai, C. Chen, Y. Liu, J. Wang, and K. Li, “Mixed cloud control testbed: Validating vehicle-road-cloud integration via mixed digital twin,” IEEE Trans. Intell. Veh., vol. 8, no. 4, pp. 2723–2736, 2023.
- A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1: 43 scale RC cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 2015.
- A. Carron and E. Franco, “Receding horizon control of a two-agent system with competitive objectives,” in Proc. Am. Control Conf. (ACC), pp. 2533–2538, 2013.
- L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen, C. Choi, J. Dusek, Y. Fang, D. Hoehener, S.-Y. Liu, M. Novitzky, I. F. Okuyama, J. Pazis, G. Rosman, V. Varricchio, H.-C. Wang, D. Yershov, H. Zhao, M. Benjamin, C. Carr, M. Zuber, S. Karaman, E. Frazzoli, D. Del Vecchio, D. Rus, J. How, J. Leonard, and A. Censi, “Duckietown: An open, inexpensive and flexible platform for autonomy education and research,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1497–1504, 2017.
- M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna, “F1/10: An open-source autonomous cyber-physical platform,” arXiv preprint arXiv:1901.08567, 2019.
- Springer Science & Business Media, 2011.
- A. Raji, A. Liniger, A. Giove, A. Toschi, N. Musiu, D. Morra, M. Verucchi, D. Caporale, and M. Bertogna, “Motion Planning and Control for Multi Vehicle Autonomous Racing at High Speeds,” Proc. Conf. Intell. Transp. Syst. (ITSC), pp. 2775–2782, 2022.
- H. G. Bock, “Recent advances in parameteridentification techniques for ODE,” pp. 95–121, Birkhäuser Boston, 1983.
- J. Valluru, P. Lakhmani, S. C. Patwardhan, and L. T. Biegler, “Development of moving window state and parameter estimators under maximum likelihood and bayesian frameworks,” Journal of Process Control, vol. 60, pp. 48–67, 2017.
- L. Simpson, A. Ghezzi, J. Asprion, and M. Diehl, “An efficient method for the joint estimation of system parameters and noise covariances for linear time-variant systems,” in Proc. IEEE Conf. Decis. Control (CDC), pp. 4524–4529, 2023.
- L. A. McGee and S. F. Schmidt, “Discovery of the kalman filter as a practical tool for aerospace and industry,” NASA Technical Memorandum, p. 21, 1985.
- Santa Barbara, CA, USA: Nob Hill Publish., LLC, 2nd ed., 2020. 3rd printing.
- J. D. Schiller, S. Muntwiler, J. Köhler, M. N. Zeilinger, and M. A. Müller, “A Lyapunov function for robust stability of moving horizon estimation,” IEEE Trans. Autom. Control, 2023.
- A. Alessandri and M. Awawdeh, “Moving-horizon estimation with guaranteed robustness for discrete-time linear systems and measurements subject to outliers,” Automatica, vol. 67, pp. 85–93, 2016.
- M. Gharbi, F. Bayer, and C. Ebenbauer, “Proximity moving horizon estimation for discrete-time nonlinear systems,” IEEE Control Systems Letters, vol. 5, pp. 2090–2095, 2021.
- J. D. Schiller and M. A. Müller, “A moving horizon state and parameter estimation scheme with guaranteed robust convergence,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 6759–6764, 2023.
- S. Muntwiler, J. Köhler, and M. N. Zeilinger, “MHE under parametric uncertainty – Robust state estimation without informative data,” arXiv preprint arXiv:2312.14049, 2023.
- J. Brembeck, “Nonlinear constrained moving horizon estimation applied to vehicle position estimation,” Sensors, vol. 19, no. 10, 2019.
- M. Zanon, J. V. Frasch, and M. Diehl, “Nonlinear moving horizon estimation for combined state and friction coefficient estimation in autonomous driving,” in Proc. Europ. Contr. Conf. (ECC), pp. 4130–4135, 2013.
- E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving: Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58443–58469, 2020.
- L. P. Fröhlich, C. Küttel, E. Arcari, L. Hewing, M. N. Zeilinger, and A. Carron, “Contextual tuning of model predictive control for autonomous racing,” in Proc. Int. Conf. Intell. Robots Syst. (IROS), pp. 10555–10562, 2022.
- J. Köhler, M. A. Müller, and F. Allgöwer, “Robust output feedback model predictive control using online estimation bounds,” arXiv preprint arXiv:2105.03427, 2021.
- L. Numerow, A. Zanelli, A. Carron, and M. N. Zeilinger, “Inherently robust suboptimal MPC for autonomous racing with anytime feasible SQP,” arXiv preprint arXiv:2401.02194, 2024.
- J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Math. Program. Comput., vol. 11, pp. 1–36, 2019.
- A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2005.
- R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados—a modular open-source framework for fast embedded optimal control,” Math. Program. Comput., vol. 14, no. 1, pp. 147–183, 2022.