Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Step Traffic Prediction for Multi-Period Planning in Optical Networks (2404.08314v1)

Published 12 Apr 2024 in cs.NI and cs.LG

Abstract: A multi-period planning framework is proposed that exploits multi-step ahead traffic predictions to address service overprovisioning and improve adaptability to traffic changes, while ensuring the necessary quality-of-service (QoS) levels. An encoder-decoder deep learning model is initially leveraged for multi-step ahead prediction by analyzing real-traffic traces. This information is then exploited by multi-period planning heuristics to efficiently utilize available network resources while minimizing undesired service disruptions (caused due to lightpath re-allocations), with these heuristics outperforming a single-step ahead prediction approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. T. Panayiotou and G. Ellinas, “Addressing traffic prediction uncertainty in multi-period planning optical networks,” in Proc. IEEE/OSA Optical Fiber Communications Conference (OFC), 2022.
  2. T. Panayiotou, M. Michalopoulou, and G. Ellinas, “Survey on machine learning for traffic-driven service provisioning in optical networks,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1412–1443, 2023.
  3. T. Panayiotou, K. Manousakis, S. Chatzis, and G. Ellinas, “A data-driven bandwidth allocation framework with QoS considerations for EONs,” IEEE/OSA J. Light. Technol., vol. 37, no. 9, pp. 1853–1864, 2019.
  4. X. Chen, R. Proietti, H. Lu, A. Castro, and S. Yoo, “Knowledge-based autonomous service provisioning in multi-domain elastic optical networks,” IEEE Commun. Mag., vol. 56, no. 8, pp. 152–158, 2018.
  5. M. Balanici and S. Pachnicke, “Classification and forecasting of real-time server traffic flows employing long short-term memory for hybrid E/O data center networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 13, no. 5, pp. 85–93, 2021.
  6. S. K. Singh, C.-Y. Liu, S. J. Ben Yoo, and R. Proietti, “Machine-learning-aided dynamic reconfiguration in optical DC/HPC networks,” in Proc. IEEE Optical Network Design and Modelling (ONDM), 2022.
  7. H. Maryam, T. Panayiotou, and G. Ellinas, “Uncertainty quantification and consideration in ML-aided traffic-driven service provisioning,” Comp. Commun., vol. 202, pp. 13–22, 2023.
  8. S. Shakya, Y. Wang, X. Cao, Z. Ye, and C. Qiao, “Minimize sub-carrier reallocation in elastic optical path networks using traffic prediction,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2013.
  9. R. Alvizu, X. Zhao, G. Maier, Y. Xu, and A. Pattavina, “Energy efficient dynamic optical routing for mobile metro-core networks under tidal traffic patterns,” IEEE/OSA J. Light. Technol., vol. 35, no. 2, pp. 325–333, 2017.
  10. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” arXiv:1406.1078 [cs.CL], 2014.
  11. S. Behera, T. Panayiotou, and G. Ellinas, “Machine learning framework for timely soft-failure detection and localization in elastic optical networks,” IEEE/OPTICA J. Opt. Commun. Netw., vol. 15, no. 10, pp. E74–E85, 2023.
  12. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol. 48, no. 8, pp. 138–145, 2010.
  13. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Time-varying spectrum allocation policies and blocking analysis in flexible optical networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 1, pp. 13–25, 2013.

Summary

We haven't generated a summary for this paper yet.