Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brane expansions for anti-symmetric line operator index (2404.08302v2)

Published 12 Apr 2024 in hep-th

Abstract: Based on the D5-brane realization of Wilson line operators in anti-symmetric representations, we propose brane expansion formulas for $I_{N,k}$, the Schur index of ${\cal N}=4$ $U(N)$ SYM decorated by line operators in the anti-symmetric representation of rank $k$. For the large $N$ index $I_{\infty,k}$ we propose a double-sum expansion, and for finite $N$ index $I_{N,k}$ we propose a quadruple-sum expansion. Objects causing finite $k$ and finite $N$ corrections are disk D3-branes ending on the D5-brane.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231-252 (1998) doi:10.4310/ATMP.1998.v2.n2.a1 [arXiv:hep-th/9711200 [hep-th]].
  2. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105-114 (1998) doi:10.1016/S0370-2693(98)00377-3 [arXiv:hep-th/9802109 [hep-th]].
  3. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253-291 (1998) doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]].
  4. S. J. Rey and J. T. Yee, “Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity,” Eur. Phys. J. C 22, 379-394 (2001) doi:10.1007/s100520100799 [arXiv:hep-th/9803001 [hep-th]].
  5. J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80, 4859-4862 (1998) doi:10.1103/PhysRevLett.80.4859 [arXiv:hep-th/9803002 [hep-th]].
  6. N. Drukker and B. Fiol, “All-genus calculation of Wilson loops using D-branes,” JHEP 02, 010 (2005) doi:10.1088/1126-6708/2005/02/010 [arXiv:hep-th/0501109 [hep-th]].
  7. S. Yamaguchi, “Wilson loops of anti-symmetric representation and D5-branes,” JHEP 05, 037 (2006) doi:10.1088/1126-6708/2006/05/037 [arXiv:hep-th/0603208 [hep-th]].
  8. E. D’Hoker, J. Estes and M. Gutperle, “Gravity duals of half-BPS Wilson loops,” JHEP 06, 063 (2007) doi:10.1088/1126-6708/2007/06/063 [arXiv:0705.1004 [hep-th]].
  9. A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, “Gauge Theories and Macdonald Polynomials,” Commun. Math. Phys. 319, 147-193 (2013) doi:10.1007/s00220-012-1607-8 [arXiv:1110.3740 [hep-th]].
  10. C. Romelsberger, “Counting chiral primaries in N = 1, d=4 superconformal field theories,” Nucl. Phys. B 747, 329-353 (2006) doi:10.1016/j.nuclphysb.2006.03.037 [arXiv:hep-th/0510060 [hep-th]].
  11. J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, “An Index for 4 dimensional super conformal theories,” Commun. Math. Phys. 275, 209-254 (2007) doi:10.1007/s00220-007-0258-7 [arXiv:hep-th/0510251 [hep-th]].
  12. J. Bourdier, N. Drukker and J. Felix, “The exact Schur index of 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” JHEP 11, 210 (2015) doi:10.1007/JHEP11(2015)210 [arXiv:1507.08659 [hep-th]].
  13. Y. Pan and W. Peelaers, “Exact Schur index in closed form,” Phys. Rev. D 106, no.4, 045017 (2022) doi:10.1103/PhysRevD.106.045017 [arXiv:2112.09705 [hep-th]].
  14. Y. Hatsuda and T. Okazaki, “𝒩𝒩\mathcal{N}caligraphic_N = 2*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT Schur indices,” JHEP 01, 029 (2023) doi:10.1007/JHEP01(2023)029 [arXiv:2208.01426 [hep-th]].
  15. T. Dimofte, D. Gaiotto and S. Gukov, “3-Manifolds and 3d Indices,” Adv. Theor. Math. Phys. 17, no.5, 975-1076 (2013) doi:10.4310/ATMP.2013.v17.n5.a3 [arXiv:1112.5179 [hep-th]].
  16. D. Gang, E. Koh and K. Lee, “Line Operator Index on S1×S3superscript𝑆1superscript𝑆3S^{1}\times S^{3}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 05, 007 (2012) doi:10.1007/JHEP05(2012)007 [arXiv:1201.5539 [hep-th]].
  17. N. Drukker, “The 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Schur index with Polyakov loops,” JHEP 12, 012 (2015) doi:10.1007/JHEP12(2015)012 [arXiv:1510.02480 [hep-th]].
  18. Y. Hatsuda and T. Okazaki, “Exact 𝒩𝒩\mathcal{N}caligraphic_N = 2*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT Schur line defect correlators,” JHEP 06, 169 (2023) doi:10.1007/JHEP06(2023)169 [arXiv:2303.14887 [hep-th]].
  19. Y. Hatsuda and T. Okazaki, “Large N and large representations of Schur line defect correlators,” JHEP 01, 096 (2024) doi:10.1007/JHEP01(2024)096 [arXiv:2309.11712 [hep-th]].
  20. Y. Hatsuda and T. Okazaki, “Excitations of bubbling geometries for line defects,” Phys. Rev. D 109, no.6, 066013 (2024) doi:10.1103/PhysRevD.109.066013 [arXiv:2311.13740 [hep-th]].
  21. A. Faraggi and L. A. Pando Zayas, “The Spectrum of Excitations of Holographic Wilson Loops,” JHEP 05, 018 (2011) doi:10.1007/JHEP05(2011)018 [arXiv:1101.5145 [hep-th]].
  22. J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons from Anti-de Sitter space,” JHEP 0006, 008 (2000) doi:10.1088/1126-6708/2000/06/008 [hep-th/0003075].
  23. A. Mikhailov, “Giant gravitons from holomorphic surfaces,” JHEP 0011, 027 (2000) doi:10.1088/1126-6708/2000/11/027 [hep-th/0010206].
  24. R. Arai and Y. Imamura, “Finite N𝑁Nitalic_N Corrections to the Superconformal Index of S-fold Theories,” PTEP 2019, no.8, 083B04 (2019) doi:10.1093/ptep/ptz088 [arXiv:1904.09776 [hep-th]].
  25. R. Arai, S. Fujiwara, Y. Imamura and T. Mori, “Schur index of the 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 U⁢(N)𝑈𝑁U(N)italic_U ( italic_N ) supersymmetric Yang-Mills theory via the AdS/CFT correspondence,” Phys. Rev. D 101, no.8, 086017 (2020) doi:10.1103/PhysRevD.101.086017 [arXiv:2001.11667 [hep-th]].
  26. Y. Imamura, “Finite-N superconformal index via the AdS/CFT correspondence,” PTEP 2021, no.12, 123B05 (2021) doi:10.1093/ptep/ptab141 [arXiv:2108.12090 [hep-th]].
  27. D. Gaiotto and J. H. Lee, “The Giant Graviton Expansion,” [arXiv:2109.02545 [hep-th]].
  28. S. Murthy, “Unitary matrix models, free fermions, and the giant graviton expansion,” Pure Appl. Math. Quart. 19, no.1, 299-340 (2023) doi:10.4310/PAMQ.2023.v19.n1.a12 [arXiv:2202.06897 [hep-th]].
  29. J. H. Lee, “Exact stringy microstates from gauge theories,” JHEP 11, 137 (2022) doi:10.1007/JHEP11(2022)137 [arXiv:2204.09286 [hep-th]].
  30. M. Beccaria and A. Cabo-Bizet, “On the brane expansion of the Schur index,” JHEP 08, 073 (2023) doi:10.1007/JHEP08(2023)073 [arXiv:2305.17730 [hep-th]].
  31. M. Beccaria and A. Cabo-Bizet, “Giant graviton expansion of Schur index and quasimodular forms,” [arXiv:2403.06509 [hep-th]].
  32. Y. Imamura, “Giant graviton expansions for line operator index,” [arXiv:2403.11543 [hep-th]].
  33. M. Beccaria, “Schur line defect correlators and giant graviton expansion,” [arXiv:2403.14553 [hep-th]].
  34. A. Faraggi, W. Mueck and L. A. Pando Zayas, “One-loop Effective Action of the Holographic Antisymmetric Wilson Loop,” Phys. Rev. D 85, 106015 (2012) doi:10.1103/PhysRevD.85.106015 [arXiv:1112.5028 [hep-th]].
  35. Y. Imamura, “Analytic continuation for giant gravitons,” PTEP 2022, no.10, 103B02 (2022) doi:10.1093/ptep/ptac127 [arXiv:2205.14615 [hep-th]].
  36. S. Fujiwara, Y. Imamura, T. Mori, S. Murayama and D. Yokoyama, “Simple-Sum Giant Graviton Expansions for Orbifolds and Orientifolds,” PTEP 2024, no.2, 023B02 (2024) doi:10.1093/ptep/ptae006 [arXiv:2310.03332 [hep-th]].
  37. S. Kim, “The Complete superconformal index for N=6 Chern-Simons theory,” Nucl. Phys. B 821, 241-284 (2009) [erratum: Nucl. Phys. B 864, 884 (2012)] doi:10.1016/j.nuclphysb.2009.06.025 [arXiv:0903.4172 [hep-th]].
  38. Y. Imamura and S. Yokoyama, “Index for three dimensional superconformal field theories with general R-charge assignments,” JHEP 04, 007 (2011) doi:10.1007/JHEP04(2011)007 [arXiv:1101.0557 [hep-th]].
  39. A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl. Phys. B 492, 152-190 (1997) doi:10.1016/S0550-3213(97)00157-0 [arXiv:hep-th/9611230 [hep-th]].
  40. F. A. Dolan, “Counting BPS operators in N=4 SYM,” Nucl. Phys. B 790, 432-464 (2008) doi:10.1016/j.nuclphysb.2007.07.026 [arXiv:0704.1038 [hep-th]].
  41. S. Dutta and R. Gopakumar, “Free fermions and thermal AdS/CFT,” JHEP 03, 011 (2008) doi:10.1088/1126-6708/2008/03/011 [arXiv:0711.0133 [hep-th]].
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com