Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IFViT: Interpretable Fixed-Length Representation for Fingerprint Matching via Vision Transformer (2404.08237v1)

Published 12 Apr 2024 in cs.CV and cs.AI

Abstract: Determining dense feature points on fingerprints used in constructing deep fixed-length representations for accurate matching, particularly at the pixel level, is of significant interest. To explore the interpretability of fingerprint matching, we propose a multi-stage interpretable fingerprint matching network, namely Interpretable Fixed-length Representation for Fingerprint Matching via Vision Transformer (IFViT), which consists of two primary modules. The first module, an interpretable dense registration module, establishes a Vision Transformer (ViT)-based Siamese Network to capture long-range dependencies and the global context in fingerprint pairs. It provides interpretable dense pixel-wise correspondences of feature points for fingerprint alignment and enhances the interpretability in the subsequent matching stage. The second module takes into account both local and global representations of the aligned fingerprint pair to achieve an interpretable fixed-length representation extraction and matching. It employs the ViTs trained in the first module with the additional fully connected layer and retrains them to simultaneously produce the discriminative fixed-length representation and interpretable dense pixel-wise correspondences of feature points. Extensive experimental results on diverse publicly available fingerprint databases demonstrate that the proposed framework not only exhibits superior performance on dense registration and matching but also significantly promotes the interpretability in deep fixed-length representations-based fingerprint matching.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. M. Chhabra, M. K. Shukla, and K. K. Ravulakollu, “State-of-the-art: A systematic literature review of image segmentation in latent fingerprint forensics,” Recent Advances in Computer Science and Communications, vol. 13, no. 6, pp. 1115–1125, 2020.
  2. S. Arora and M. S. Bhatia, “Fingerprint spoofing detection to improve customer security in mobile financial applications using deep learning,” Arabian Journal for Science and Engineering, vol. 45, no. 4, pp. 2847–2863, 2020.
  3. J. J. Engelsma, K. Cao, and A. K. Jain, “Learning a fixed-length fingerprint representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 6, pp. 1981–1997, 2019.
  4. S. A. Grosz, J. J. Engelsma, E. Liu, and A. K. Jain, “C2cl: Contact to contactless fingerprint matching,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 196–210, 2021.
  5. K. Cao, D. L. Nguyen, C. Tymoszek, and A. K. Jain, “End-to-end latent fingerprint search,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 880–894, 2019.
  6. A. Takahashi, Y. Koda, K. Ito, and et al., “Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task cnn,” in 2020 IEEE International Joint Conference on Biometrics (IJCB).   IEEE, 2020, pp. 1–8.
  7. Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang, “Efficient parallel split learning over resource-constrained wireless edge networks,” IEEE Transactions on Mobile Computing, 2023.
  8. Y. Qiu, Y. Hui, P. Zhao, C. H. Cai, B. Dai, J. Dou, et al., “A novel image expression-driven modeling strategy for coke quality prediction in the smart cokemaking process,” Energy, vol. 294, p. 130866, 2024.
  9. H. Yuan, Z. Chen, Z. Lin, J. Peng, Z. Fang, Y. Zhong, Z. Song, X. Wang, and Y. Gao, “Graph Learning for Multi-Satellite Based Spectrum Sensing,” in Proc. ICCT, 2023.
  10. Z. Lin, G. Qu, W. Wei, X. Chen, and K. K. Leung, “Adaptsfl: Adaptive split federated learning in resource-constrained edge networks,” arXiv preprint arXiv:2403.13101, 2024.
  11. Y. Qiu, J. Wang, and et al., “Pose-guided matching based on deep learning for assessing quality of action on rehabilitation training,” Biomedical Signal Processing and Control, vol. 72, p. 103323, 2022.
  12. R. Confalonieri, L. Coba, and et al., “A historical perspective of explainable artificial intelligence,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 11, no. 1, p. e1391, 2021.
  13. F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,” in 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO).   IEEE, May 2018, pp. 0210–0215.
  14. M. Tico and P. Kuosmanen, “Fingerprint matching using an orientation-based minutia descriptor,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1009–1014, 2003.
  15. Z. Cui, J. Feng, and J. Zhou, “Dense registration and mosaicking of fingerprints by training an end-to-end network,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 627–642, 2020.
  16. S. Gu, J. Feng, J. Lu, and J. Zhou, “Latent fingerprint registration via matching densely sampled points,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1231–1244, 2020.
  17. S. A. Grosz and A. K. Jain, “Afr-net: Attention-driven fingerprint recognition network,” IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023.
  18. C. Lin and A. Kumar, “A cnn-based framework for comparison of contactless to contact-based fingerprints,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 662–676, 2018.
  19. S. Tandon and A. Namboodiri, “Transformer based fingerprint feature extraction,” in 2022 26th International Conference on Pattern Recognition (ICPR).   IEEE, August 2022, pp. 870–876.
  20. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  21. J. Chen and C. M. Ho, “Mm-vit: Multi-modal video transformer for compressed video action recognition,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 1910–1921.
  22. Y. Huang, L. Chen, C. Zhou, and et al., “Model long-range dependencies for multi-modality and multi-view retinopathy diagnosis through transformers,” Knowledge-Based Systems, vol. 271, p. 110544, 2023.
  23. J. Yang, C. Li, P. Zhang, and et al., “Focal attention for long-range interactions in vision transformers,” Advances in Neural Information Processing Systems, vol. 34, pp. 30 008–30 022, 2021.
  24. K. Cao and A. K. Jain, “Fingerprint indexing and matching: An integrated approach,” in 2017 IEEE International Joint Conference on Biometrics (IJCB).   IEEE, October 2017, pp. 437–445.
  25. S. A. Grosz, J. J. Engelsma, R. Ranjan, N. Ramakrishnan, M. Aggarwal, G. G. Medioni, and A. K. Jain, “Minutiae-guided fingerprint embeddings via vision transformers,” arXiv preprint arXiv:2210.13994, 2022.
  26. W. Samek and K. R. Müller, “Towards explainable artificial intelligence,” Explainable AI: interpreting, explaining and visualizing deep learning, pp. 5–22, 2019.
  27. P. C. Neto and et al., “Pic-score: Probabilistic interpretable comparison score for optimal matching confidence in single-and multi-biometric face recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1021–1029.
  28. B. Yin, L. Tran, H. Li, X. Shen, and X. Liu, “Towards interpretable face recognition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9348–9357.
  29. X. Jiang and W. Y. Yau, “Fingerprint minutiae matching based on the local and global structures,” in Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 2.   IEEE, September 2000, pp. 1038–1041.
  30. R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code: A new representation and matching technique for fingerprint recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2128–2141, 2010.
  31. Z. Cui, J. Feng, and J. Zhou, “Dense fingerprint registration via displacement regression network,” in 2019 International Conference on Biometrics (ICB).   IEEE, June 2019, pp. 1–8.
  32. J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “Loftr: Detector-free local feature matching with transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8922–8931.
  33. A. Chowdhury, S. Kirchgasser, A. Uhl, and A. Ross, “Can a cnn automatically learn the significance of minutiae points for fingerprint matching?” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 351–359.
  34. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
  35. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  36. M. Tyszkiewicz, P. Fua, and E. Trulls, “Disk: Learning local features with policy gradient,” Advances in Neural Information Processing Systems, vol. 33, pp. 14 254–14 265, 2020.
  37. Y. Tang, F. Gao, and et al., “Fingernet: An unified deep network for fingerprint minutiae extraction,” in 2017 IEEE International Joint Conference on Biometrics (IJCB).   IEEE, October 2017, pp. 108–116.
  38. X. Si, J. Feng, B. Yuan, and J. Zhou, “Dense registration of fingerprints,” Pattern Recognition, vol. 63, pp. 87–101, 2017.
  39. P. E. Sarlin and et al., “Superglue: Learning feature matching with graph neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4938–4947.
  40. R. Cappelli, D. Maio, and D. Maltoni, “An improved noise model for the generation of synthetic fingerprints,” in ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004, vol. 2.   IEEE, December 2004, pp. 1250–1255.
  41. D. Song and J. Feng, “Fingerprint indexing based on pyramid deep convolutional feature,” in 2017 IEEE International Joint Conference on Biometrics (IJCB).   IEEE, October 2017, pp. 200–207.
  42. J. J. Engelsma, D. Deb, K. Cao, and et al., “Infant-id: Fingerprints for global good,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3543–3559, 2021.
  43. “Fvc2002,” http://bias.csr.unibo.it/fvc2002/, 2002.
  44. A. Sankaran, M. Vatsa, and R. Singh, “Multisensor optical and latent fingerprint database,” IEEE Access, vol. 3, pp. 653–665, 2015.
  45. J. J. Engelsma, S. Grosz, and A. K. Jain, “Printsgan: Synthetic fingerprint generator,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 5, pp. 6111–6124, 2022.
  46. “Fvc2004,” http://bias.csr.unibo.it/fvc2004/, 2004.
  47. C. I. Watson and C. L. Wilson, “Nist special database 4,” Fingerprint Database, National Institute of Standards and Technology, vol. 17, no. 77, p. 5, 1992.
  48. F. Maes, D. Vandermeulen, and P. Suetens, “Medical image registration using mutual information,” Proceedings of the IEEE, vol. 91, no. 10, pp. 1699–1722, 2003.
  49. F. Maes, A. Collignon, and et al., “Multimodality image registration by maximization of mutual information,” IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 187–198, 1997.
Citations (20)

Summary

We haven't generated a summary for this paper yet.