Sharp spectral transition for embedded eigenvalues of perturbed periodic Dirac operators (2404.08218v1)
Abstract: We consider the Dirac equation on $L2(\mathbb{R})\oplus L2(\mathbb{R})$ \begin{align} Ly= \begin{pmatrix} 0&-1 1&0 \end{pmatrix} \begin{pmatrix} y_1 y_2 \end{pmatrix}'+ \begin{pmatrix} p&q q&-p \end{pmatrix}\begin{pmatrix} y_1 y_2 \end{pmatrix}+ V\begin{pmatrix} y_1 y_2 \end{pmatrix}=\lambda y,\nonumber \end{align} where $y=y(x,\lambda)=\tbinom{y_1(x,\lambda)}{y_2(x,\lambda)}$, $p$ and $q$ are real $1$-periodic, and \begin{align} V=\begin{pmatrix} V(x)&0 0&-V(x) \end{pmatrix}\nonumber \end{align} is the perturbation which satisfies $V(x)=o(1)$ as $\abs{x}\to\infty.$ Under such perturbation, the essential spectrum of $L$ coincides with that there is no perturbation. We prove that if $V(x)=\frac{o(1)}{1+\abs{x}}$ as $x\to\infty$ or $x\to-\infty$, then there is no embedded eigenvalues (eigenvalues appear in the essential spectrum). For any given finite set inside of the essential spectrum which satisfies the non-resonance assumption, we construct smooth potentials with $V(x)=\frac{O(1)}{1+\abs{x}}$ as $\abs{x}\to\infty$ so that the set becomes embedded eigenvalues. For any given countable set inside of the essential spectrum which satisfies the non-resonance assumption, we construct smooth potentials with $V(x)<\frac{\abs{h(x)}}{1+\abs{x}}$ as $\abs{x}\to\infty$ so that the set becomes embedded eigenvalues, where $h(x)$ is any given function with $\lim_{x\to\pm\infty}\abs{h(x)}=\infty.$
- Bounds for the point spectrum for a Sturm-Liouville equation. Proc. Roy. Soc. Edinburgh Sect. A, 80(1-2):57–66, 1978.
- Perturbations of periodic Sturm-Liouville operators. Adv. Math., 422:Paper No. 109022, 22, 2023.
- Periodic differential operators, volume 230 of Operator Theory: Advances and Applications. Birkhäuser/Springer Basel AG, Basel, 2013.
- J. Janas and S. Simonov. A Weyl-Titchmarsh type formula for a discrete Schrödinger operator with Wigner–von Neumann potential. Studia Math., 201(2):167–189, 2010.
- S. Jitomirskaya and W. Liu. Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian. Geom. Funct. Anal., 29(1):238–257, 2019.
- Eigenvalues for perturbed periodic Jacobi matrices by the Wigner–von Neumann approach. Integral Equations Operator Theory, 85(3):427–450, 2016.
- Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach. J. Difference Equ. Appl., 24(8):1247–1272, 2018.
- Spectral results for perturbed periodic Jacobi matrices using the discrete Levinson technique. Studia Math., 242(2):179–215, 2018.
- T. Kato. Growth properties of solutions of the reduced wave equation with a variable coefficient. Comm. Pure Appl. Math., 12:403–425, 1959.
- Sharp bound for embedded eigenvalues of Dirac operators with decaying potentials. New York J. Math., 28:1317–1328, 2022.
- A. Kiselev. Imbedded singular continuous spectrum for Schrödinger operators. J. Amer. Math. Soc., 18(3):571–603, 2005.
- Effective perturbation methods for one-dimensional Schrödinger operators. J. Differential Equations, 151(2):290–312, 1999.
- E. Korotyaev and D. Mokeev. Periodic Dirac operator with dislocation. J. Differential Equations, 296:369–411, 2021.
- E. Korotyaev and D. Mokeev. Dubrovin equation for periodic Dirac operator on the half-line. Appl. Anal., 101(1):337–365, 2022.
- H. Krüger. On the existence of embedded eigenvalues. J. Math. Anal. Appl., 395(2):776–787, 2012.
- W. Liu. The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators. Pure Appl. Funct. Anal., 4(3):589–602, 2019.
- W. Liu. Criteria for eigenvalues embedded into the absolutely continuous spectrum of perturbed Stark type operators. J. Funct. Anal., 276(9):2936–2967, 2019.
- W. Liu. Sharp bounds for finitely many embedded eigenvalues of perturbed Stark type operators. Math. Nachr., 293(9):1776–1790, 2020.
- W. Liu. Criteria for embedded eigenvalues for discrete Schrödinger operators. Int. Math. Res. Not. IMRN, (20):15803–15832, 2021.
- W. Liu. Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues. Geom. Funct. Anal., 32(1):1–30, 2022.
- W. Liu and K. Lyu. One dimensional discrete Schrödinger operators with resonant embedded eigenvalues. In From complex analysis to operator theory—a panorama, volume 291 of Oper. Theory Adv. Appl., pages 619–636. Birkhäuser/Springer, Cham, [2023] ©2023.
- W. Liu and D. C. Ong. Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators. J. Anal. Math., 141(2):625–661, 2020.
- V. Lotoreichik and S. Simonov. Spectral analysis of the half-line Kronig-Penney model with Wigner–Von Neumann perturbations. Rep. Math. Phys., 74(1):45–72, 2014.
- M. Lukić. Schrödinger operators with slowly decaying Wigner-von Neumann type potentials. J. Spectr. Theory, 3(2):147–169, 2013.
- M. Lukić. A class of Schrödinger operators with decaying oscillatory potentials. Comm. Math. Phys., 326(2):441–458, 2014.
- M. Lukić and D. C. Ong. Wigner-von Neumann type perturbations of periodic Schrödinger operators. Trans. Amer. Math. Soc., 367(1):707–724, 2015.
- S. N. Naboko. On the dense point spectrum of Schrödinger and Dirac operators. Teoret. Mat. Fiz., 68(1):18–28, 1986.
- B. Simon. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc., 125(1):203–208, 1997.
- S. Simonov. Zeroes of the spectral density of the Schrödinger operator with the slowly decaying Wigner–von Neumann potential. Math. Z., 284(1-2):335–411, 2016.
- Über merkwürdige diskrete eigenwerte. pages 291–293, 1993.