Dissecting Quantum Many-body Chaos in the Krylov Space (2404.08207v1)
Abstract: The growth of simple operators is essential for the emergence of chaotic dynamics and quantum thermalization. Recent studies have proposed different measures, including the out-of-time-order correlator and Krylov complexity. It is established that the out-of-time-order correlator serves as the signature of quantum many-body chaos, while the Krylov complexity provides its upper bound. However, there exist non-chaotic systems in which Krylov complexity grows exponentially, indicating that the Krylov complexity itself is not a witness of many-body chaos. In this letter, we introduce the missing ingredient, named as the Krylov metric $K_{mn}$, which probes the size of the Krylov basis. We propose that the universal criteria for fast scramblers include (i) the exponential growth of Krylov complexity, (ii) the diagonal elements $K_{nn}\sim nh$ with $h\in(0,1]$, and (iii) the negligibility of off-diagonal elements $K_{mn}$ with $m\neq n$. We further show that $h=\varkappa / 2\alpha$ is a ratio between the quantum Lyapunov exponent $\varkappa$ and the Krylov exponent $\alpha$. This proposal is supported by both generic arguments and explicit examples, including solvable SYK models, Luttinger Liquids, and many-body localized systems. Our results provide a refined understanding of how chaotic dynamics emerge from the Krylov space perspective.
- P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09, 120, arXiv:0708.4025 [hep-th] .
- Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10, 065, arXiv:0808.2096 [hep-th] .
- T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nuclear Physics B 253, 173 (1985).
- G. ’t Hooft, The black hole interpretation of string theory, Nuclear Physics B 335, 138 (1990).
- Y. Kiem, H. L. Verlinde, and E. P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52, 7053 (1995), arXiv:hep-th/9502074 .
- G. ’t Hooft, The Scattering matrix approach for the quantum black hole: An Overview, Int. J. Mod. Phys. A 11, 4623 (1996), arXiv:gr-qc/9607022 .
- A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, Soviet Journal of Experimental and Theoretical Physics 28, 1200 (1969).
- S. H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03, 067, arXiv:1306.0622 [hep-th] .
- S. H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05, 132, arXiv:1412.6087 [hep-th] .
- A. Kitaev, talk given at fundamental physics prize symposium (2014).
- D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks, JHEP 03, 051, arXiv:1409.8180 [hep-th] .
- D. A. Roberts, D. Stanford, and A. Streicher, Operator growth in the SYK model, JHEP 06, 122, arXiv:1802.02633 [hep-th] .
- J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, JHEP 08, 106, arXiv:1503.01409 [hep-th] .
- A. Kitaev, A simple model of quantum holography (part 1), Kavli Institute for Theoretical Physics Program: Entanglement in Strongly-Correlated Quantum Matter (Apr 6 - Jul 2, 2015). (2015).
- S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
- J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016), arXiv:1604.07818 [hep-th] .
- A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05, 183, arXiv:1711.08467 [hep-th] .
- S. Xu and B. Swingle, Scrambling Dynamics and Out-of-Time-Ordered Correlators in Quantum Many-Body Systems, PRX Quantum 5, 010201 (2024), arXiv:2202.07060 [quant-ph] .
- X. Chen and T. Zhou, Quantum chaos dynamics in long-range power law interaction systems, Phys. Rev. B 100, 064305 (2019), arXiv:1808.09812 [cond-mat.stat-mech] .
- T. Zhou and X. Chen, Operator dynamics in a Brownian quantum circuit, Phys. Rev. E 99, 052212 (2019), arXiv:1805.09307 [cond-mat.str-el] .
- J. Maldacena, D. Stanford, and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65, 1700034 (2017), arXiv:1704.05333 [hep-th] .
- D. A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04, 121, arXiv:1610.04903 [quant-ph] .
- R. Jefferson and R. C. Myers, Circuit complexity in quantum field theory, JHEP 10, 107, arXiv:1707.08570 [hep-th] .
- R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev. D 97, 066004 (2018), arXiv:1709.00921 [hep-th] .
- R. Khan, C. Krishnan, and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys. Rev. D 98, 126001 (2018), arXiv:1801.07620 [hep-th] .
- A. Lucas, Operator size at finite temperature and Planckian bounds on quantum dynamics, Phys. Rev. Lett. 122, 216601 (2019), arXiv:1809.07769 [cond-mat.str-el] .
- C. Liu, H. Tang, and H. Zhai, Krylov complexity in open quantum systems, Physical Review Research 5, 033085 (2023), arXiv:2207.13603 [cond-mat.str-el] .
- A. Dymarsky and A. Gorsky, Quantum chaos as delocalization in Krylov space, Phys. Rev. B 102, 085137 (2020), arXiv:1912.12227 [cond-mat.stat-mech] .
- J. L. F. Barbón, J. Martín-García, and M. Sasieta, Momentum/Complexity Duality and the Black Hole Interior, JHEP 07, 169, arXiv:1912.05996 [hep-th] .
- J. M. Magán and J. Simón, On operator growth and emergent Poincaré symmetries, JHEP 05, 071, arXiv:2002.03865 [hep-th] .
- S.-K. Jian, B. Swingle, and Z.-Y. Xian, Complexity growth of operators in the SYK model and in JT gravity, JHEP 03, 014, arXiv:2008.12274 [hep-th] .
- C.-F. Chen and A. Lucas, Operator Growth Bounds from Graph Theory, Commun. Math. Phys. 385, 1273 (2021), arXiv:1905.03682 [math-ph] .
- J. D. Noh, Operator growth in the transverse-field Ising spin chain with integrability-breaking longitudinal field, Phys. Rev. E 104, 034112 (2021), arXiv:2107.08287 [quant-ph] .
- P. Caputa and S. Datta, Operator growth in 2d CFT, JHEP 12, 188, [Erratum: JHEP 09, 113 (2022)], arXiv:2110.10519 [hep-th] .
- D. Patramanis, Probing the entanglement of operator growth, PTEP 2022, 063A01 (2022), arXiv:2111.03424 [hep-th] .
- P. Caputa, J. M. Magan, and D. Patramanis, Geometry of Krylov complexity, Phys. Rev. Res. 4, 013041 (2022), arXiv:2109.03824 [hep-th] .
- A. Dymarsky and M. Smolkin, Krylov complexity in conformal field theory, Phys. Rev. D 104, L081702 (2021), arXiv:2104.09514 [hep-th] .
- A. Avdoshkin and A. Dymarsky, Euclidean operator growth and quantum chaos, Phys. Rev. Res. 2, 043234 (2020), arXiv:1911.09672 [cond-mat.stat-mech] .
- C. Liu, H. Tang, and H. Zhai, Krylov complexity in open quantum systems, Phys. Rev. Res. 5, 033085 (2023), arXiv:2207.13603 [cond-mat.str-el] .
- B. Bhattacharjee, P. Nandy, and T. Pathak, Operator dynamics in Lindbladian SYK: a Krylov complexity perspective, JHEP 01, 094, arXiv:2311.00753 [quant-ph] .
- C. Lv, R. Zhang, and Q. Zhou, Building Krylov complexity from circuit complexity, arXiv e-prints , arXiv:2303.07343 (2023), arXiv:2303.07343 [quant-ph] .
- H. Tang, Operator Krylov complexity in random matrix theory, arXiv e-prints , arXiv:2312.17416 (2023), arXiv:2312.17416 [hep-th] .
- R. Zhang and H. Zhai, Universal Hypothesis of Autocorrelation Function from Krylov Complexity, arXiv e-prints , arXiv:2305.02356 (2023), arXiv:2305.02356 [cond-mat.stat-mech] .
- T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2003).
- F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, Comptes Rendus Physique 19, 498 (2018), arXiv:1711.03145 [cond-mat.str-el] .
- E. Altman and R. Vosk, Universal Dynamics and Renormalization in Many-Body-Localized Systems, Annual Review of Condensed Matter Physics 6, 383 (2015), arXiv:1408.2834 [cond-mat.dis-nn] .
- R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015), arXiv:1404.0686 [cond-mat.stat-mech] .
- M. Serbyn, Z. Papić, and D. A. Abanin, Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett. 111, 127201 (2013).
- D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenology of fully many-body-localized systems, Phys. Rev. B 90, 174202 (2014).
- R. Vosk and E. Altman, Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett. 110, 067204 (2013).
- Notice that our convention for the Liouvillian superoperator differs from that in [33] by a factor of i𝑖iitalic_i.
- C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. B 45, 255 (1950).
- Z. Liu and P. Zhang, Signature of Scramblon Effective Field Theory in Random Spin Models, Phys. Rev. Lett. 132, 060201 (2024), arXiv:2306.05678 [quant-ph] .
- Y. Chen, H. Zhai, and P. Zhang, Tunable Quantum Chaos in the Sachdev-Ye-Kitaev Model Coupled to a Thermal Bath, JHEP 07, 150, arXiv:1705.09818 [hep-th] .
- P. Zhang and Z. Yu, Dynamical Transition of Operator Size Growth in Quantum Systems Embedded in an Environment, Phys. Rev. Lett. 130, 250401 (2023).
- See supplementary material for: (1). Detailed derivations of the asymptotic behaviors of the Krylov metric; (2). Detailed computations of the operator-size distribution of the Krylov metric.
- Y. Huang, Y.-L. Zhang, and X. Chen, Out-of-time-ordered correlators in many-body localized systems, Annalen Phys. 529, 1600318 (2017), arXiv:1608.01091 [cond-mat.dis-nn] .
- B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95, 060201 (2017), arXiv:1608.03280 [cond-mat.str-el] .
- R.-Q. He and Z.-Y. Lu, Characterizing many-body localization by out-of-time-ordered correlation, Phys. Rev. B 95, 054201 (2017), arXiv:1608.03586 [cond-mat.dis-nn] .
- Y. Chen, Universal Logarithmic Scrambling in Many Body Localization, arXiv e-prints , arXiv:1608.02765 (2016), arXiv:1608.02765 [cond-mat.dis-nn] .
- Y. Gu, A. Kitaev, and P. Zhang, A two-way approach to out-of-time-order correlators, JHEP 03, 133, arXiv:2111.12007 [hep-th] .
- P. Zhang and Y. Gu, Operator size distribution in large N quantum mechanics of Majorana fermions, JHEP 10, 018, arXiv:2212.04358 [cond-mat.str-el] .