Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering Analysis of US COVID-19 Rates, Vaccine Participation, and Socioeconomic Factors (2404.08186v1)

Published 12 Apr 2024 in cs.CE and physics.soc-ph

Abstract: The COVID-19 pandemic has presented unprecedented challenges worldwide, with its impact varying significantly across different geographic and socioeconomic contexts. This study employs a clustering analysis to examine the diversity of responses to the pandemic within the United States, aiming to provide nuanced insights into the effectiveness of various strategies. We utilize an unsupervised machine learning approach, specifically K-Means clustering, to analyze county-level data that includes variables such as infection rates, death rates, demographic profiles, and socio-economic factors. Our analysis identifies distinct clusters of counties based on their pandemic responses and outcomes, facilitating a detailed examination of "high-performing" and "lower-performing" groups. These classifications are informed by a combination of COVID-specific datasets and broader socio-economic data, allowing for a comprehensive understanding of the factors that contribute to differing levels of pandemic impact. The findings underscore the importance of tailored public health responses that consider local conditions and capabilities. Additionally, this study introduces an innovative visualization tool that aids in hypothesis testing and further research, enhancing the ability of policymakers and public health officials to deploy more effective and targeted interventions in future health crises.

Citations (2)

Summary

We haven't generated a summary for this paper yet.