Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the structure of graph product von Neumann algebras (2404.08150v1)

Published 11 Apr 2024 in math.OA, math.CO, math.FA, and math.GR

Abstract: We undertake a comprehensive study of structural properties of graph products of von Neumann algebras equipped with faithful, normal states, as well as properties of the graph products relative to subalgebras coming from induced subgraphs. Among the technical contributions in this paper include a complete bimodule calculation for subalgebras arising from subgraphs. As an application, we obtain a complete classification of when two subalgebras coming from induced subgraphs can be amenable relative to each other. We also give complete characterizations of when the graph product can be full, diffuse, or a factor. Our results are obtained in a broad generality, and we emphasize that they are new even in the tracial setting. They also allow us to deduce new results about when graph products of groups can be amenable relative to each other.

Summary

We haven't generated a summary for this paper yet.