Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlling measurement-induced phase transitions with tunable detector coupling (2404.07918v4)

Published 11 Apr 2024 in quant-ph, cond-mat.mes-hall, cond-mat.stat-mech, and cond-mat.str-el

Abstract: We study the evolution of a quantum many-body system driven by two competing measurements, which induces a topological entanglement transition between two distinct area law phases. We employ a positive operator-valued measurement with variable coupling between the system and detector within free fermion dynamics. This approach allows us to continuously track the universal properties of the transition between projective and continuous monitoring. Our findings suggest that the percolation universality of the transition in the projective limit is unstable when the system-detector coupling is reduced.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, Cambridge, 2014).
  2. B. Zeng and X. Chen, Quantum information meets quantum matter, Quantum Science and Technology (Springer, New York, NY, 2019).
  3. Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
  4. B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced Phase Transitions in the Dynamics of Entanglement, Phys. Rev. X 9, 031009 (2019).
  5. M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100, 064204 (2019).
  6. Measurement-induced entanglement and teleportation on a noisy quantum processor, Nature 622, 481 (2023).
  7. A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-induced topological entanglement transitions in symmetric random quantum circuits, Nat. Phys. 17, 342 (2021a).
  8. A. Lavasani, Y. Alavirad, and M. Barkeshli, Topological Order and Criticality in $(2+1)\mathrm{D}$ Monitored Random Quantum Circuits, Phys. Rev. Lett. 127, 235701 (2021b).
  9. N. Lang and H. P. Büchler, Entanglement transition in the projective transverse field Ising model, Phys. Rev. B 102, 094204 (2020).
  10. S. Sang and T. H. Hsieh, Measurement-protected quantum phases, Phys. Rev. Research 3, 023200 (2021).
  11. G. Kells, D. Meidan, and A. Romito, Topological transitions in weakly monitored free fermions, SciPost Phys. 14, 031 (2023).
  12. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  13. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics January Special Issue, 321, 2 (2006).
  14. K. Klocke and M. Buchhold, Majorana loop models for measurement-only quantum circuits, Phys. Rev. X 13, 041028 (2023).
  15. O. Alberton, M. Buchhold, and S. Diehl, Entanglement Transition in a Monitored Free-Fermion Chain: From Extended Criticality to Area Law, Phys. Rev. Lett. 126, 170602 (2021).
  16. M. Szyniszewski, A. Romito, and H. Schomerus, Universality of entanglement transitions from stroboscopic to continuous measurements, Phys. Rev. Lett. 125, 210602 (2020).
  17. X. Cao, A. Tilloy, and A. De Luca, Entanglement in a Fermion chain under continuous monitoring, SciPost Physics 7, 024 (2019).
  18. H. E. Brandt, Positive operator valued measure in quantum information processing, American Journal of Physics 67, 434 (1999).
  19. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).
  20. M. Szyniszewski, O. Lunt, and A. Pal, Disordered monitored free fermions, Phys. Rev. B 108, 165126 (2023).
  21. J. Merritt and L. Fidkowski, Entanglement transitions with free fermions, Phys. Rev. B 107, 064303 (2023).
  22. B. Zeng and D. L. Zhou, Topological and error-correcting properties for symmetry-protected topological order, EPL 113, 56001 (2016).
  23. A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
  24. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
  25. I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A: Math. Gen. 36, L205 (2003).
  26. I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A: Math. Theor. 42, 504003 (2009).
  27. J. Keating and F. Mezzadri, Random Matrix Theory and Entanglement in Quantum Spin Chains, Commun. Math. Phys. 252, 543 (2004).
  28. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium : Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  29.  See Supplemental Material for (i) objective function, and (ii) Fitted data.
  30. G. Roósz, R. Juhász, and F. Iglói, Nonequilibrium dynamics of the Ising chain in a fluctuating transverse field, Phys. Rev. B 93, 134305 (2016).
  31. M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in Two Dimensions, Journal of Mathematical Physics 5, 1117 (1964).
  32. D. Stauffer and A. Aharony, Introduction to percolation theory (CRC press, 2018).
  33. Y. Deng and X. Yang, Finite-size scaling of energylike quantities in percolation, Phys. Rev. E 73, 066116 (2006).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com