Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomaly Detection in Power Grids via Context-Agnostic Learning (2404.07898v1)

Published 11 Apr 2024 in cs.LG and stat.AP

Abstract: An important tool grid operators use to safeguard against failures, whether naturally occurring or malicious, involves detecting anomalies in the power system SCADA data. In this paper, we aim to solve a real-time anomaly detection problem. Given time-series measurement values coming from a fixed set of sensors on the grid, can we identify anomalies in the network topology or measurement data? Existing methods, primarily optimization-based, mostly use only a single snapshot of the measurement values and do not scale well with the network size. Recent data-driven ML techniques have shown promise by using a combination of current and historical data for anomaly detection but generally do not consider physical attributes like the impact of topology or load/generation changes on sensor measurements and thus cannot accommodate regular context-variability in the historical data. To address this gap, we propose a novel context-aware anomaly detection algorithm, GridCAL, that considers the effect of regular topology and load/generation changes. This algorithm converts the real-time power flow measurements to context-agnostic values, which allows us to analyze measurement coming from different grid contexts in an aggregate fashion, enabling us to derive a unified statistical model that becomes the basis of anomaly detection. Through numerical simulations on networks up to 2383 nodes, we show that our approach is accurate, outperforming state-of-the-art approaches, and is computationally efficient.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Real-time Assessment Task Force, North American Electricity Reliability Corporation, “NERC operating committee compliance implementation guidance real-time assessment”,” 2017.
  2. Reliability First, NERC Lesson Learned, “Lessons learned: State estimator outages requiring tuning/calibrating EMS settings,” 2018.
  3. NERC Lesson Learned, “Loss of state estimator due to contradicting information from dual ICCP clusters,” 2020.
  4. ——, “Model data error impacts state estimator and real-time contingency analysis results,” 2020.
  5. J. Heydari and A. Tajer, “Quickest localization of anomalies in power grids: A stochastic graphical framework,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4679–4688, 2017.
  6. S. Li, A. Pandey, B. Hooi, C. Faloutsos, and L. Pileggi, “Dynamic graph-based anomaly detection in the electrical grid,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 3408 – 3422, 2021.
  7. H. M. Merrill and F. C. Schweppe, “Bad data suppression in power system static state estimation,” IEEE Transactions on Power Apparatus and Systems, no. 6, pp. 2718–2725, 1971.
  8. T. Takagi, Y. Yamakoshi, M. Yamaura, R. Kondow, and T. Matsushima, “Development of a new type fault locator using the one-terminal voltage and current data,” IEEE Transactions on Power apparatus and systems, no. 8, pp. 2892–2898, 1982.
  9. W. Niemira, R. B. Bobba, P. Sauer, and W. H. Sanders, “Malicious data detection in state estimation leveraging system losses & estimation of perturbed parameters,” in 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm).   IEEE, 2013, pp. 402–407.
  10. Y. Liao, “Unsynchronized fault location based on distributed parameter line model,” Electric Power Components and Systems, vol. 35, no. 9, pp. 1061–1077, 2007.
  11. W. L. Peterson and A. Girgis, “Multiple bad data detection in power system state estimation using linear programming,” in The Twentieth Southeastern Symposium on System Theory.   IEEE Computer Society, 1988, pp. 405–406.
  12. B. Hooi, D. Eswaran, H. A. Song, A. Pandey, M. Jereminov, L. Pileggi, and C. Faloutsos, “Gridwatch: Sensor placement and anomaly detection in the electrical grid,” in ECML-PKDD.   Springer, 2018, pp. 71–86.
  13. E. M. Lourenço, A. S. Costa, and K. A. Clements, “Bayesian-based hypothesis testing for topology error identification in generalized state estimation,” IEEE Transactions on power systems, vol. 19, no. 2, pp. 1206–1215, 2004.
  14. E. M. Lourenço, A. S. Costa, K. A. Clements, and R. A. Cernev, “A topology error identification method directly based on collinearity tests,” IEEE Transactions on power systems, vol. 21, no. 4, pp. 1920–1929, 2006.
  15. D. Singh, J. Pandey, and D. Chauhan, “Topology identification, bad data processing, and state estimation using fuzzy pattern matching,” IEEE Transactions on power systems, vol. 20, no. 3, pp. 1570–1579, 2005.
  16. K. A. Clements and A. S. Costa, “Topology error identification using normalized lagrange multipliers,” IEEE Transactions on power systems, vol. 13, no. 2, pp. 347–353, 1998.
  17. Y. Lin and A. Abur, “A computationally efficient method for identifying network parameter errors,” in 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT).   IEEE, 2016, pp. 1–5.
  18. M. Göl and A. Abur, “LAV based robust state estimation for systems measured by pmus,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1808–1814, 2014.
  19. S. Li, A. Pandey, and L. Pileggi, “A WLAV-based robust hybrid state estimation using circuit-theoretic approach,” in 2021 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2021, pp. 1–5.
  20. S. Park, R. Mohammadi-Ghazi, and J. Lavaei, “Nonlinear least absolute value estimator for topology error detection and robust state estimation,” IEEE Access, vol. 9, pp. 137 198 – 137 210, 2021.
  21. D. Han, Y. Mo, and L. Xie, “Convex optimization based state estimation against sparse integrity attacks,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2383–2395, 2019.
  22. Y. Weng, M. D. Ilić, Q. Li, and R. Negi, “Convexification of bad data and topology error detection and identification problems in AC electric power systems,” IET Generation, Transmission & Distribution, vol. 9, no. 16, pp. 2760–2767, 2015.
  23. M. Amer and S. Abdennadher, “Comparison of unsupervised anomaly detection techniques,” Bachelor’s Thesis, 2011.
  24. H. A. Song, B. Hooi, M. Jereminov, A. Pandey, L. Pileggi, and C. Faloutsos, “Powercast: Mining and forecasting power grid sequences,” in ECML-PKDD.   Springer, 2017, pp. 606–621.
  25. E. Parzen, “On estimation of a probability density function and mode,” The annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.
  26. Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding of classifiers to maximize F1 measure,” Mach Learn Knowl Discov Databases, vol. 8725, p. 225–239, 2014.
  27. R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on power systems, vol. 26, no. 1, pp. 12–19, 2011.
  28. L. Akoglu, M. McGlohon, and C. Faloutsos, “OddBall: Spotting anomalies in weighted graphs,” in PAKDD.   Springer, 2010, pp. 410–421.
  29. Z. Chen, W. Hendrix, and N. F. Samatova, “Community-based anomaly detection in evolutionary networks,” Journal of Intelligent Information Systems, vol. 39, no. 1, pp. 59–85, 2012.
  30. M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, and D. Koutra, “Com2: fast automatic discovery of temporal (‘Comet’) communities,” in PAKDD.   Springer, 2014, pp. 271–283.
  31. N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “Timecrunch: Interpretable dynamic graph summarization,” in KDD.   ACM, 2015, pp. 1055–1064.
  32. M. Mongiovi, P. Bogdanov, R. Ranca, E. E. Papalexakis, C. Faloutsos, and A. K. Singh, “NetSpot: Spotting significant anomalous regions on dynamic networks,” in SDM.   SIAM, 2013, pp. 28–36.
  33. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying density-based local outliers,” in ACM sigmod record, vol. 29, no. 2.   ACM, 2000, pp. 93–104.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com