Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Performance of Jerk-Constrained Time-Optimal Trajectory Planning for Industrial Manipulators (2404.07889v1)

Published 11 Apr 2024 in cs.RO

Abstract: Jerk-constrained trajectories offer a wide range of advantages that collectively improve the performance of robotic systems, including increased energy efficiency, durability, and safety. In this paper, we present a novel approach to jerk-constrained time-optimal trajectory planning (TOTP), which follows a specified path while satisfying up to third-order constraints to ensure safety and smooth motion. One significant challenge in jerk-constrained TOTP is a non-convex formulation arising from the inclusion of third-order constraints. Approximating inequality constraints can be particularly challenging because the resulting solutions may violate the actual constraints. We address this problem by leveraging convexity within the proposed formulation to form conservative inequality constraints. We then obtain the desired trajectories by solving an $\boldsymbol n$-dimensional Sequential Linear Program (SLP) iteratively until convergence. Lastly, we evaluate in a real robot the performance of trajectories generated with and without jerk limits in terms of peak power, torque efficiency, and tracking capability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. T. Chettibi, H. Lehtihet, M. Haddad, and S. Hanchi, “Minimum cost trajectory planning for industrial robots,” European Journal of Mechanics-A/Solids, vol. 23, no. 4, pp. 703–715, 2004.
  2. M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple shooting algorithms for optimal robot control,” Fast Motions in Biomechanics and Robotics, pp. 65–93, 2006.
  3. J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally optimal, collision-free trajectories with sequential convex optimization.” in Robotics: Science and Systems, vol. 9, no. 1.   Berlin, Germany, 2013.
  4. Y. Zhao, H.-C. Lin, and M. Tomizuka, “Efficient trajectory optimization for robot motion planning,” in International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2018, pp. 260–265.
  5. X. Zhang, F. Xiao, X. Tong, J. Yun, Y. Liu, Y. Sun, B. Tao, J. Kong, M. Xu, and B. Chen, “Time optimal trajectory planning based on improved sparrow search algorithm,” Frontiers in Bioengineering and Biotechnology, vol. 10, 2022.
  6. K. Shin and N. McKay, “Minimum-time control of robotic manipulators with geometric path constraints,” IEEE Transactions on Automatic Control, vol. 30, no. 6, pp. 531–541, 1985.
  7. Z. Shiller and S. Dubowsky, “Robot path planning with obstacles, actuator, gripper, and payload constraints,” The International Journal of Robotics Research, vol. 8, no. 6, pp. 3–18, 1989.
  8. ——, “On computing the global time-optimal motions of robotic manipulators in the presence of obstacles,” IEEE Transactions on Robotics and Automation, vol. 7, no. 6, pp. 785–797, 1991.
  9. J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of robotic manipulators along specified paths,” The international journal of robotics research, vol. 4, no. 3, pp. 3–17, 1985.
  10. F. Pfeiffer and R. Johanni, “A concept for manipulator trajectory planning,” IEEE Journal on Robotics and Automation, vol. 3, no. 2, pp. 115–123, 1987.
  11. D. Eager, A.-M. Pendrill, and N. Reistad, “Beyond velocity and acceleration: Jerk, snap and higher derivatives,” European Journal of Physics, vol. 37, no. 6, 2016.
  12. Q.-C. Pham, “A general, fast, and robust implementation of the time-optimal path parameterization algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533–1540, 2014.
  13. D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl, “Time-optimal path tracking for robots: A convex optimization approach,” IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2318–2327, 2009.
  14. K. Hauser, “Fast interpolation and time-optimization with contact,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1231–1250, 2014.
  15. K. Shin and N. McKay, “A dynamic programming approach to trajectory planning of robotic manipulators,” IEEE Transactions on Automatic Control, vol. 31, no. 6, pp. 491–500, 1986.
  16. C. Singh, “Optimality conditions in multiobjective differentiable programming,” Journal of Optimization Theory and Applications, vol. 53, pp. 115–123, 1987.
  17. R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning of time-optimal, jerk-limited trajectories,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2008, pp. 3248–3253.
  18. L. Berscheid and T. Kröger, “Jerk-limited real-time trajectory generation with arbitrary target states,” arXiv preprint arXiv:2105.04830, 2021.
  19. H. Pham and Q.-C. Pham, “A new approach to time-optimal path parameterization based on reachability analysis,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 645–659, 2018.
  20. L. Consolini, M. Locatelli, A. Minari, A. Nagy, and I. Vajk, “Optimal time-complexity speed planning for robot manipulators,” IEEE Transactions on Robotics, vol. 35, no. 3, pp. 790–797, 2019.
  21. H. Pham and Q.-C. Pham, “On the structure of the time-optimal path parameterization problem with third-order constraints,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 679–686.
  22. J. Ma, S. Gao, H. Yan, Q. Lv, and G. Hu, “A new approach to time-optimal trajectory planning with torque and jerk limits for robot,” Robotics and Autonomous Systems, vol. 140, 2021.
  23. J. Mattmüller and D. Gisler, “Calculating a near time-optimal jerk-constrained trajectory along a specified smooth path,” The International Journal of Advanced Manufacturing Technology, vol. 45, pp. 1007–1016, 2009.
  24. M. Wang, J. Xiao, S. Liu, and H. Liu, “A third-order constrained approximate time-optimal feedrate planning algorithm,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2295–2307, 2021.
  25. S. Lu, J. Zhao, L. Jiang, H. Liu, et al., “Solving the time-jerk optimal trajectory planning problem of a robot using augmented lagrange constrained particle swarm optimization,” Mathematical Problems in Engineering, vol. 2017, 2017.
  26. Q. Zhang, S. Li, and X. Gao, “Practical smooth minimum time trajectory planning for path following robotic manipulators,” in American Control Conference.   IEEE, 2013, pp. 2778–2783.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com