Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iPREFER: An Intelligent Parameter Extractor based on Features for BSIM-CMG Models (2404.07827v1)

Published 11 Apr 2024 in eess.SY and cs.SY

Abstract: This paper introduces an innovative parameter extraction method for BSIM-CMG compact models, seamlessly integrating curve feature extraction and machine learning techniques. This method offers a promising solution for bridging the division between TCAD and compact model, significantly contributing to the Design Technology Co-Optimization (DTCO) process. The key innovation lies in the development of an automated IV and CV curve feature extractor, which not only streamlines the analysis of device IV and CV curves but also enhances the consistency and efficiency of data processing. Validation on 5-nm nanosheet devices underscores the extractor's remarkable precision, with impressively low fitting errors of 0.42% for CV curves and 1.28% for IV curves. Furthermore, its adaptability to parameter variations, including those in Equivalent Oxide Thickness and Gate Length, solidifies its potential to revolutionize the TCAD-to-compact model transition. This universal BSIM-CMG model parameter extractor promises to improve the DTCO process, offering efficient process optimization and accurate simulations for semiconductor device performance prediction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp. 114 ff.” IEEE solid-state circuits society newsletter, vol. 11, no. 3, pp. 33–35, 2006.
  2. D. James, “Intel ivy bridge unveiled—the first commercial tri-gate, high-k, metal-gate cpu,” in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.   IEEE, 2012, pp. 1–4.
  3. Y. et al., “Sub-25nm finfet with advanced fin formation and short channel effect engineering,” in 2011 Symposium on VLSI Technology-Digest of Technical Papers.   IEEE, 2011, pp. 14–15.
  4. C. Lin, B. Greene, S. Narasimha, J. Cai, A. Bryant, C. Radens, V. Narayanan, B. Linder, H. Ho, A. Aiyar et al., “High performance 14nm soi finfet cmos technology with 0.0174 μ𝜇\muitalic_μm 2 embedded dram and 15 levels of cu metallization,” in 2014 IEEE International Electron Devices Meeting.   IEEE, 2014, pp. 3–8.
  5. S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu et al., “A 14nm logic technology featuring 2 nd-generation finfet, air-gapped interconnects, self-aligned double patterning and a 0.0588 μ𝜇\muitalic_μm 2 sram cell size,” in 2014 IEEE international electron devices meeting.   IEEE, 2014, pp. 3–7.
  6. X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in nanoscale finfets,” in 2011 International Electron Devices Meeting, 2011, pp. 5.4.1–5.4.4.
  7. A. Asenov, B. Cheng, X. Wang, A. R. Brown, C. Millar, C. Alexander, S. M. Amoroso, J. B. Kuang, and S. R. Nassif, “Variability aware simulation based design-technology cooptimization (dtco) flow in 14 nm finfet/sram cooptimization,” IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 1682–1690, 2014.
  8. H. Luo, R. Li, X. Miao, and X. Wang, “A comprehensive study of device variability of sub-5 nm nanosheet transistors and interplay with quantum confinement variation,” Science China Information Sciences, vol. 66, no. 2, p. 129402, 2023.
  9. Y. Sun, X. Li, Z. Liu, Y. Liu, X. Li, and Y. Shi, “Vertically stacked nanosheets tree-type reconfigurable transistor with improved on-current,” IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 370–374, 2021.
  10. V. Moroz, X.-W. Lin, P. Asenov, D. Sherlekar, M. Choi, L. Sponton, L. S. Melvin, J. Lee, B. Cheng, A. Nannipieri, J. Huang, and S. Jones, “Dtco launches moore’s law over the feature scaling wall,” in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 41.1.1–41.1.4.
  11. L. W. Liebmann and R. O. Topaloglu, “Design and technology co-optimization near single-digit nodes,” in 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2014, pp. 582–585.
  12. J. Wang, Y.-H. Kim, J. Ryu, C. Jeong, W. Choi, and D. Kim, “Artificial neural network-based compact modeling methodology for advanced transistors,” IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 1318–1325, 2021.
  13. M. Li, O. İrsoy, C. Cardie, and H. G. Xing, “Physics-inspired neural networks for efficient device compact modeling,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 2, pp. 44–49, 2016.
  14. G. Alia, A. Buzo, H. Maier-Flaig, K.-W. Pieper, L. Maurer, and G. Pelz, “Machine learning-based acceleration of genetic algorithms for parameter extraction of highly dimensional mosfet compact models,” in 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS).   IEEE, 2021, pp. 1–4.
  15. J. Xu and D. E. Root, “Advances in artificial neural network models of active devices,” in 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO).   IEEE, 2015, pp. 1–3.
  16. M.-Y. Kao, F. Chavez, S. Khandelwal, and C. Hu, “Deep learning-based bsim-cmg parameter extraction for 10-nm finfet,” IEEE Transactions on Electron Devices, vol. 69, no. 8, pp. 4765–4768, 2022.
  17. A. Ashai, A. Jadhav, A. K. Behera, S. Roy, A. Dasgupta, and B. Sarkar, “Deep learning-based fast bsim-cmg parameter extraction for general input dataset,” IEEE Transactions on Electron Devices, 2023.
  18. Y.-C. Wu, Y.-R. Jhan, Y.-C. Wu, and Y.-R. Jhan, “Introduction of synopsys sentaurus tcad simulation,” 3D TCAD Simulation for CMOS Nanoeletronic Devices, pp. 1–17, 2018.
  19. S. Khandelwal, J. P. Duarte, A. S. Medury, S. Venugopalan, N. Paydavosi, D. D. Lu, C.-H. Lin, M. Dunga, S. Yao, T. Morshed et al., “Bsim-cmg 110.0. 0: Multi-gate mosfet compact model: technical manual,” 2015.
  20. N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang et al., “Stacked nanosheet gate-all-around transistor to enable scaling beyond finfet,” in 2017 Symposium on VLSI Technology.   IEEE, 2017, pp. T230–T231.
  21. P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv preprint arXiv:1710.05941, 2017.

Summary

We haven't generated a summary for this paper yet.