Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saturation-Informed Current-Limiting Control for Grid-Forming Converters (2404.07682v2)

Published 11 Apr 2024 in eess.SY and cs.SY

Abstract: In this paper, we investigate the transient stability of a state-of-the-art grid-forming complex-droop control (i.e., dispatchable virtual oscillator control, dVOC) under current saturation. We quantify the saturation level of a converter by introducing the concept of degree of saturation (DoS), and we propose a provably stable current-limiting control with saturation-informed feedback, which feeds the degree of saturation back to the inner voltage-control loop and the outer grid-forming loop. As a result, although the output current is saturated, the voltage phase angle can still be generated from an internal virtual voltage-source node that is governed by an equivalent complex-droop control. We prove that the proposed control achieves transient stability during current saturation under grid faults. We also provide parametric stability conditions for multi-converter systems under grid-connected and islanded scenarios. The stability performance of the current-limiting control is validated with various case studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems,” in Proc. Power Syst. Comput. Conf., 2018, pp. 1–25.
  2. R. H. Lasseter, Z. Chen, and D. Pattabiraman, “Grid-forming inverters: A critical asset for the power grid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 925–935, 2019.
  3. M. Chandorkar, D. Divan, and R. Adapa, “Control of parallel connected inverters in standalone ac supply systems,” IEEE Trans. Ind. Appl., vol. 29, no. 1, pp. 136–143, 1993.
  4. H.-P. Beck and R. Hesse, “Virtual synchronous machine,” 2007 9th International Conference on Electrical Power Quality and Utilisation, pp. 1–6, 2007.
  5. M. Colombino, D. Groß, J.-S. Brouillon, and F. Dörfler, “Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters,” IEEE Trans. Autom. Control, vol. 64, no. 11, pp. 4496–4511, 2019.
  6. D. Groß, M. Colombino, J.-S. Brouillon, and F. Dörfler, “The effect of transmission-line dynamics on grid-forming dispatchable virtual oscillator control,” IEEE Trans. Control Netw. Syst., vol. 6, no. 3, pp. 1148–1160, 2019.
  7. I. Subotić, D. Groß, M. Colombino, and F. Dörfler, “A Lyapunov framework for nested dynamical systems on multiple time scales with application to converter-based power systems,” IEEE Trans. Autom. Control, vol. 66, no. 12, pp. 5909–5924, 2021.
  8. M. Lu, S. Dutta, V. Purba, S. Dhople, and B. Johnson, “A grid-compatible virtual oscillator controller: Analysis and design,” in 2019 IEEE Energy Conversion Congress and Exposition, 2019, pp. 2643–2649.
  9. M. Lu, S. Dhople, and B. Johnson, “Benchmarking nonlinear oscillators for grid-forming inverter control,” IEEE Trans. Power Electron., vol. 37, no. 9, pp. 10 250–10 266, 2022.
  10. F. Milano, “Complex frequency,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1230–1240, 2022.
  11. X. He, V. Häberle, and F. Dörfler, “Complex-frequency synchronization of converter-based power systems,” 2022. [Online]. Available: https://arxiv.org/abs/2208.13860
  12. X. He, V. Häberle, I. Subotić, and F. Dörfler, “Nonlinear stability of complex droop control in converter-based power systems,” IEEE Control Syst. Lett., vol. 7, pp. 1327–1332, 2023.
  13. X. He, L. Huang, I. Subotić, V. Häberle, and F. Dörfler, “Quantitative stability conditions for grid-forming converters with complex droop control,” arXiv preprint arXiv:2310.09933, 2023.
  14. X. He and F. Dörfler, “Passivity and decentralized stability conditions for grid-forming converters,” IEEE Trans. Power Syst., pp. 1–4, 2024.
  15. R. Lasseter, “Microgrids,” in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, vol. 1, 2002, pp. 305–308.
  16. A. D. Paquette and D. M. Divan, “Virtual impedance current limiting for inverters in microgrids with synchronous generators,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1630–1638, 2015.
  17. T. Qoria, F. Gruson, F. Colas, X. Kestelyn, and X. Guillaud, “Current limiting algorithms and transient stability analysis of grid-forming VSCs,” Electr. Power Syst. Res., vol. 189, p. 106726, 2020.
  18. R. Rosso, S. Engelken, and M. Liserre, “On the implementation of an FRT strategy for grid-forming converters under symmetrical and asymmetrical grid faults,” IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 4385–4397, 2021.
  19. B. Fan and X. Wang, “Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 3141–3144, 2022.
  20. Y. Zhang, C. Zhang, R. Yang, M. Molinas, and X. Cai, “Current-constrained power-angle characterization method for transient stability analysis of grid-forming voltage source converters,” IEEE Trans. Energy Convers., vol. 38, no. 2, pp. 1338–1349, 2023.
  21. K. G. Saffar, S. Driss, and F. B. Ajaei, “Impacts of current limiting on the transient stability of the virtual synchronous generator,” IEEE Trans. Power Electron., vol. 38, no. 2, pp. 1509–1521, 2023.
  22. Y. Laba, A. Bruyère, F. Colas, and X. Guillaud, “Virtual power-based technique for enhancing the large voltage disturbance stability of hv grid-forming converters,” in 2023 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe).   IEEE, 2023, pp. 1–8.
  23. Y. Li, Y. Gu, and T. C. Green, “Revisiting grid-forming and grid-following inverters: A duality theory,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4541–4554, 2022.
  24. L. Huang, H. Xin, Z. Wang, L. Zhang, K. Wu, and J. Hu, “Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 578–591, 2019.
  25. H. Wu and X. Wang, “Design-oriented transient stability analysis of grid-connected converters with power synchronization control,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6473–6482, 2019.
  26. D. Groß and X. Lyu, “Towards constrained grid-forming control,” in 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2023, pp. 1–6.
  27. S. Samanta, C. Lagoa, and N. R. Chaudhuri, “Nonlinear model predictive control for droop-based grid forming converters providing fast frequency support,” IEEE Trans. Power Del., pp. 1–11, 2023.
  28. A. F. Darbandi, A. Sinkar, and A. Gole, “Effect of short-circuit ratio and current limiting on the stability of a virtual synchronous machine type gridforming converter,” in The 17th International Conference on AC and DC Power Transmission, vol. 2021, 2021, pp. 182–187.
  29. P. Ge, F. Xiao, C. Tu, Q. Guo, J. Gao, and Y. Song, “Comprehensive transient stability enhancement control of a vsg considering power angle stability and fault current limitation,” CSEE J. Power Energy Syst., pp. 1–10, 2022.
  30. O. Ajala, M. Lu, B. Johnson, S. V. Dhople, and A. Domínguez-García, “Model reduction for inverters with current limiting and dispatchable virtual oscillator control,” IEEE Trans. Energy Convers., vol. 37, no. 4, pp. 2250–2259, 2022.
  31. M. A. Awal and I. Husain, “Transient stability assessment for current-constrained and current-unconstrained fault ride through in virtual oscillator-controlled converters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 6935–6946, 2021.
  32. A. Tayyebi, A. Anta, and F. Dörfler, “Grid-forming hybrid angle control and almost global stability of the dc–ac power converter,” IEEE Trans. Autom. Control, vol. 68, no. 7, pp. 3842–3857, 2023.
  33. J. Fang, H. Deng, and S. M. Goetz, “Grid impedance estimation through grid-forming power converters,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2094–2104, 2021.
  34. K. Wang, Y. Yang, M. Fan, Y. Tang, H. Li, R. Chen, J. Hu, W. Zeng, and J. Rodriguez, “Grid impedance detection based on complex coefficient filter and full-order capacitor current observer for three-phase grid-connected inverters,” IEEE Trans. Power Electron., vol. 38, no. 2, pp. 2408–2420, 2023.
  35. W. Dong, H. Xin, D. Wu, and L. Huang, “Small signal stability analysis of multi-infeed power electronic systems based on grid strength assessment,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1393–1403, 2019.
Citations (3)

Summary

We haven't generated a summary for this paper yet.