$α$-$z$-Rényi divergences in von Neumann algebras: data-processing inequality, reversibility, and monotonicity properties in $α,z$ (2404.07617v2)
Abstract: We study the $\alpha$-$z$-R\'enyi divergences $D_{\alpha,z}(\psi|\varphi)$ where $\alpha,z>0$ ($\alpha\ne1$) for normal positive functionals $\psi,\varphi$ on general von Neumann algebras, introduced in [S.~Kato and Y.~Ueda, arXiv:2307.01790] and [S.~Kato, arXiv:2311.01748]. We prove the variational expressions and the data processing inequality (DPI) for the $\alpha$-$z$-R\'enyi divergences. We establish the sufficiency theorem for $D_{\alpha,z}(\psi|\varphi)$, saying that for $(\alpha,z)$ inside the DPI bounds, the equality $D_{\alpha,z}(\psi\circ\gamma|\varphi\circ\gamma)=D_{\alpha,z}(\psi|\varphi)<\infty$ in the DPI under a quantum channel (or a normal $2$-positive unital map) $\gamma$ implies the reversibility of $\gamma$ with respect to $\psi,\varphi$. Moreover, we show the monotonicity properties of $D_{\alpha,z}(\psi|\varphi)$ in the parameters $\alpha,z$ and their limits to the normalized relative entropy as $\alpha\nearrow1$ and $\alpha\searrow1$.
- L. Accardi and C. Cecchini. Conditional expectations in von Neumann algebras and a theorem of Takesaki. Journal of Functional Analysis, 45:245–273, 1982. doi:10.1016/0022-1236(82)90022-2.
- T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra and its Applications, 26:203–241, 1979. doi:10.1016/0024-3795(79)90179-4.
- H. Araki. Relative entropy of states of von Neumann algebras. Publications of the Research Institute for Mathematical Sciences, 11(3):809–833, 1976.
- Discriminating states: the quantum Chernoff bound. Physical Review Letters, 98:160501 (4 pages), 2007.
- K. M. Audenaert and N. Datta. α𝛼\alphaitalic_α-z-Rényi relative entropies. Journal of Mathematical Physics, 56(2):022202 (16 pages), 2015. doi:10.1063/1.4906367.
- B. Beauzamy. Introduction to Banach Spaces and their Geometry. Mathematics Studies, volume 68, North-Holland, Amsterdam, 1982.
- S. Beigi. Sandwiched Rényi divergence satisfies data processing inequality. Journal of Mathematical Physics, 54(12):122202 (11 pages), 2013. doi:10.1063/1.4838855.
- J. Bergh and J. Löfström. Interpolation Spaces: An Introduction. Springer, Berlin-Heidelberg-New York, 1976.
- Rényi divergences as weighted non-commutative vector valued Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Annales Henri Poincaré, 19:1843–1867, 2018. doi:https://doi.org/10.48550/arXiv.1608.05317.
- Inequalities for quantum divergences and the Audenaert–Datta conjecture. Journal of Physics A: Mathematical and Theoretical, 51(48):483001 (23 pages), 2018. doi:https://doi.org/10.1088/1751-8121/aae8a3.
- M.-D. Choi. A Schwarz inequality for positive linear maps on C𝐶Citalic_C*-algebras. Illinois Journal of Mathematics, 18(4):565–574, 1974. doi:10.1215/ijm/1256051007.
- M. Cwikel. Complex interpolation spaces, a discrete definition and reiteration. Indiana University Mathematics Journal, 27(6):1005–1009, 1978.
- T. Fack and H. Kosaki. Generalized s𝑠sitalic_s-numbers of τ𝜏\tauitalic_τ-measurable operators. Pacific Journal of Mathematics, 123(2):269–300, 1986.
- Asymptotic equipartition theorems in von Neumann algebras. arXiv preprint arXiv:2212.14700v2 [quant-ph], 2023.
- Monotonicity of a relative Rényi entropy. Journal of Mathematical Physics, 54(12):122201 (5 pages), 2013. doi:10.1063/1.4838835.
- U. Haagerup. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces associated with an arbitrary von Neumann algebra. In Algebres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274, pages 175–184, 1979.
- A reduction method for noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces and applications. Transactions of the American Mathematical Society, 362(4):2125–2165, 2010.
- F. Hiai. Quantum f𝑓fitalic_f-divergences in von Neumann algebras. I. Standard f𝑓fitalic_f-divergences. Journal of Mathematical Physics, 59(10):102202 (27pages), 2018. doi:10.1063/1.5039973.
- F. Hiai. Lectures on Selected Topics in von Neumann Algebras. EMS Press, Berlin, 2021a. doi:10.4171/ELM/32.
- F. Hiai. Quantum f𝑓fitalic_f-Divergences in von Neumann Algebras: Reversibility of Quantum Operations. Mathematical Physics Studies. Springer, Singapore, 2021b. ISBN 9789813341999. doi:10.1007/978-981-33-4199-9.
- F. Hiai. Log-majorization and matrix norm inequalities with application to quantum information. arXiv preprint arXiv:2402.16067, 2024.
- F. Hiai and H. Kosaki. Connections of unbounded operators and some related topics: von Neumann algebra case. International Journal of Mathematics, 32(05):2150024 (88 pages), 2021. doi:10.1142/S0129167X21500245.
- F. Hiai and M. Mosonyi. Different quantum f𝑓fitalic_f-divergences and the reversibility of quantum operations. Reviews in Mathematical Physics, 29(7):1750023 (80 pages), 2017. doi:10.1142/S0129055X17500234.
- F. Hiai and M. Tsukada. Strong martingale convergence of generalized conditional expectations on von Neumann algebras. Transactions of the American Mathematical Society, 282(2):791–798, 1984. doi:10.1090/S0002-9947-1984-0732120-1.
- Entropic fluctuations in quantum statistical mechanics. An introduction. In Quantum Theory from Small to Large Scales, August 2010, Lecture Notes of the Les Houches Summer School, (Oxford University Press, 2012), volume 95, pages 213–410. arXiv:1106.3786.
- Quantum hypothesis testing and non-equilibrium statistical mechanics. Reviews in Mathematical Physics, 24(6):1230002 (67 pages), 2012. doi:10.1142/S0129055X12300026.
- A. Jenčová. Preservation of a quantum Rényi relative entropy implies existence of a recovery map. Journal of Physics A: Mathematical and Theoretical, 50(8):085303 (12 pages), 2017. doi:10.1088/1751-8121/aa5661.
- A. Jenčová. Rényi relative entropies and noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Annales Henri Poincaré, 19:2513–2542, 2018. doi:10.1007/s00023-018-0683-5.
- A. Jenčová. Rényi relative entropies and noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces II. Annales Henri Poincaré, 22:3235–3254, 2021. doi:10.1007/s00023-021-01074-9.
- A. Jenčová and D. Petz. Sufficiency in quantum statistical inference. Communications in Mathematical Physics, 263:259–276, 2006. doi:10.1007/s00220-005-1510-7.
- Markov triplets on CCR-algebras. Acta Scientiarum Mathematicarum, 76(1-2):111–134, 2010.
- M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. The Annals of Probability, 31(2):948–995, 2003.
- S. Kato. On α𝛼\alphaitalic_α-z𝑧zitalic_z-Rényi divergence in the von Neumann algebra setting. Journal on Mathematical Physics, 65:042202 (16 pages), 2024. doi:10.1063/5.0186552.
- S. Kato and Y. Ueda. A remark on non-commutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Studia Math., to appear. arXiv preprint arXiv:2307.01790, 2023.
- H. Kosaki. Applications of the complex interpolation method to a von Neumann algebra: Non-commutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Journal of Functional Analysis, 56:26–78, 1984a. doi:https://doi.org/10.1016/0022-1236(84)90025-9.
- H. Kosaki. Applications of uniform convexity of noncommutative Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Transactions of the American Mathematical Society, 283:265–282, 1984b.
- H. Kosaki. Relative entropy of states: A variational expression. Journal of Operator Theory, 16:335–348, 1986.
- H. Kosaki. An inequality of Araki-Lieb-Thirring (von Neumann algebra case). Proceedings of the American Mathematical Society, 114(2):477–481, 1992. doi:10.1090/S0002-9939-1992-1065951-1.
- Data processing for the sandwiched Rényi divergence: a condition for equality. Letters in Mathematical Physics, 107(1):61–80, 2017. doi:10.1007/s11005-016-0896-9.
- M. S. Lin and M. Tomamichel. Investigating properties of a family of quantum Rényi divergences. Quantum Information Processing, 14(4):1501–1512, 2015.
- M. Mosonyi. The strong converse exponent of discriminating infinite-dimensional quantum states. Communications in Mathematical Physics, 400(1):83–132, 2023. doi:10.1007/s00220-022-04598-1.
- M. Mosonyi and F. Hiai. Some continuity properties of quantum Rényi divergences. IEEE Transactions on Information Theory, 70(4):2674–2700, 2023. doi:10.1109/TIT.2023.3324758.
- M. Mosonyi and T. Ogawa. Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Communications in Mathematical Physics, 334:1617–1648, 2015. doi:10.1007/s00220-014-2248-x.
- M. Mosonyi and T. Ogawa. Two approaches to obtain the strong converse exponent of quantum hypothesis testing for general sequences of quantum states. IEEE Transactions on Information Theory, 61(12):6975–6994, 2015.
- A. Müller-Hermes and D. Reeb. Monotonicity of the quantum relative entropy under positive maps. Annales Henri Poincaré, 18:1777–1788, 2017. doi:doi.org/10.1007/s00023-017-0550-9.
- On quantum Rényi entropies: A new generalization and some properties. Journal of Mathematical Physics, 54(12):122203 (20 pages), 2013.
- M. Nussbaum and A. Szkoła. The Chernoff lower bound for symmetric quantum hypothesis testing. The Annals of Statistics 37(2):1040–1057, 2009.
- M. Ohya and D. Petz. Quantum Entropy and Its Use. Texts and Monographs in Physics, 2nd ed., Springer, Berlin, 2004.
- D. Petz. Quasi-entropies for states of a von Neumann algebra. Publications of the Research Institute for Mathematical Sciences, 21(4):787–800, 1985. doi:10.2977/prims/1195178929.
- D. Petz. Quasi-entropies for finite quantum systems. Reports on Mathematical Physics, 23(1):57–65, 1986a.
- D. Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Communications in Mathematical Physics, 105(1):123–131, 1986. doi:10.1007/BF01212345.
- D. Petz. Sufficiency of channels over von Neumann algebras. The Quarterly Journal of Mathematics, 39(1):97–108, 1988. doi:10.1093/qmath/39.1.97.
- M. Takesaki. Theory of Operator Algebras II. Encyclopaedia of Mathematical Sciences, volume 125, Springer, Berlin, 2003.
- M. Terp. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces associated with von Neumann algebras. Notes, Copenhagen University, 1981.
- Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Communications in Mathematical Physics, 331:593–622, 2014. doi:10.1007/s00220-014-2122-x.
- C. Zalinescu. Convex Analysis in General Vector Spaces. World scientific, Singapore, 2002.
- H. Zhang. From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture. Advances in Mathematics, 365:107053 (18 pages), 2020b. doi:10.1016/j.aim.2020.107053.
- H. Zhang. Equality conditions of data processing inequality for α𝛼\alphaitalic_α-z Rényi relative entropies. Journal of Mathematical Physics, 61(10):102201 (15 pages), 2020a. doi:10.1063/5.0022787.