Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A continuous-time violation-free multi-agent optimization algorithm and its applications to safe distributed control (2404.07571v1)

Published 11 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: In this work, we propose a continuous-time distributed optimization algorithm with guaranteed zero coupling constraint violation and apply it to safe distributed control in the presence of multiple control barrier functions (CBF). The optimization problem is defined over a network that collectively minimizes a separable cost function with coupled linear constraints. An equivalent optimization problem with auxiliary decision variables and a decoupling structure is proposed. A sensitivity analysis demonstrates that the subgradient information can be computed using local information. This then leads to a subgradient algorithm for updating the auxiliary variables. A case with sparse coupling constraints is further considered, and it is shown to have better memory and communication efficiency. For the specific case of a CBF-induced time-varying quadratic program (QP), an update law is proposed that achieves finite-time convergence. Numerical results involving a static resource allocation problem and a safe coordination problem for a multi-agent system demonstrate the efficiency and effectiveness of our proposed algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. I. Notarnicola and G. Notarstefano, “Constraint-coupled distributed optimization: a relaxation and duality approach,” IEEE Transactions on Control of Network Systems, vol. 7, no. 1, pp. 483–492, 2019.
  2. A. Nedić and J. Liu, “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 77–103, 2018.
  3. T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019.
  4. A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Dual decomposition for multi-agent distributed optimization with coupling constraints,” Automatica, vol. 84, pp. 149–158, 2017.
  5. A. Simonetto and H. Jamali-Rad, “Primal recovery from consensus-based dual decomposition for distributed convex optimization,” Journal of Optimization Theory and Applications, vol. 168, pp. 172–197, 2016.
  6. D. Mateos-Núnez and J. Cortés, “Distributed saddle-point subgradient algorithms with Laplacian averaging,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2720–2735, 2016.
  7. X. Li, G. Feng, and L. Xie, “Distributed proximal algorithms for multiagent optimization with coupled inequality constraints,” IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1223–1230, 2020.
  8. A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate analysis for dual subgradient methods,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1757–1780, 2009.
  9. H. Wang, A. Papachristodoulou, and K. Margellos, “Distributed control design and safety verification for multi-agent systems,” arXiv preprint arXiv:2303.12610, 2023.
  10. Q. Liu and J. Wang, “A second-order multi-agent network for bound-constrained distributed optimization,” IEEE Transactions on Automatic Control, vol. 60, no. 12, pp. 3310–3315, 2015.
  11. X. Wu, S. Magnússon, and M. Johansson, “Distributed safe resource allocation using barrier functions,” Automatica, vol. 153, p. 111051, 2023.
  12. H. Abeynanda, C. Weeraddana, G. Lanel, and C. Fischione, “On the primal feasibility in dual decomposition methods under additive and bounded errors,” IEEE Transactions on Signal Processing, vol. 71, pp. 655–669, 2023.
  13. X. Tan and D. V. Dimarogonas, “Distributed implementation of control barrier functions for multi-agent systems,” IEEE Control Systems Letters, vol. 6, pp. 1879–1884, 2021.
  14. P. Mestres and J. Cortes, “Distributed and anytime algorithm for network optimization problems with seperable structure,” in 2023 IEEE Conference on Decision and Control (CDC).   IEEE, 2023, pp. 5457–5462.
  15. A. Cherukuri and J. Cortés, “Distributed generator coordination for initialization and anytime optimization in economic dispatch,” IEEE Transactions on Control of Network Systems, vol. 2, no. 3, pp. 226–237, 2015.
  16. J. Cortes, “Discontinuous dynamical systems,” IEEE Control systems magazine, vol. 28, no. 3, pp. 36–73, 2008.
  17. S. M. Robinson, “Strongly regular generalized equations,” Mathematics of Operations Research, vol. 5, no. 1, pp. 43–62, 1980.
  18. G. Wachsmuth, “On licq and the uniqueness of lagrange multipliers,” Operations Research Letters, vol. 41, no. 1, pp. 78–80, 2013.
  19. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in Proc. European Control Conf., 2019, pp. 3420–3431.
  20. X. Tan and D. V. Dimarogonas, “Compatibility checking of multiple control barrier functions for input constrained systems,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 939–944.
  21. M. Santilli, G. Oliva, and A. Gasparri, “Distributed finite-time algorithm for a class of quadratic optimization problems with time-varying linear constraints,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 4380–4386.
  22. J. Cortés, “Finite-time convergent gradient flows with applications to network consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.
  23. M. Franceschelli, A. Pisano, A. Giua, and E. Usai, “Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs,” IEEE transactions on Automatic Control, vol. 60, no. 4, pp. 1133–1138, 2014.
  24. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  25. W. W. Hager, “Lipschitz continuity for constrained processes,” SIAM Journal on Control and Optimization, vol. 17, no. 3, pp. 321–338, 1979.
Citations (2)

Summary

We haven't generated a summary for this paper yet.