Stability in Phase Retrieval: Characterizing Condition Numbers and the Optimal Vector Set (2404.07515v2)
Abstract: In this paper, we primarily focus on analyzing the stability property of phase retrieval by examining the bi-Lipschitz property of the map $\Phi_{\boldsymbol{A}}(\boldsymbol{x})=|\boldsymbol{A}\boldsymbol{x}|\in \mathbb{R}+m$, where $\boldsymbol{x}\in \mathbb{H}d$ and $\boldsymbol{A}\in \mathbb{H}{m\times d}$ is the measurement matrix for $\mathbb{H}\in{\mathbb{R},\mathbb{C}}$. We define the condition number $\beta{\boldsymbol{A}}=\frac{U_{\boldsymbol{A}}}{L_{\boldsymbol{A}}}$, where $L_{\boldsymbol{A}}$ and $U_{\boldsymbol{A}}$ represent the optimal lower and upper Lipschitz constants, respectively. We establish the first universal lower bound on $\beta_{\boldsymbol{A}}$ by demonstrating that for any ${\boldsymbol{A}}\in\mathbb{H}{m\times d}$, \begin{equation*} \beta_{\boldsymbol{A}}\geq \beta_0{\mathbb{H}}=\begin{cases} \sqrt{\frac{\pi}{\pi-2}}\,\,\approx\,\, 1.659 & \text{if $\mathbb{H}=\mathbb{R}$,}\ \sqrt{\frac{4}{4-\pi}}\,\,\approx\,\, 2.159 & \text{if $\mathbb{H}=\mathbb{C}$.} \end{cases} \end{equation*} We prove that the condition number of a standard Gaussian matrix in $\mathbb{H}{m\times d}$ asymptotically matches the lower bound $\beta_0{\mathbb{H}}$ for both real and complex cases. This result indicates that the constant lower bound $\beta_0{\mathbb{H}}$ is asymptotically tight, holding true for both the real and complex scenarios. As an application of this result, we utilize it to investigate the performance of quadratic models for phase retrieval. Lastly, we establish that for any odd integer $m\geq 3$, the harmonic frame $\boldsymbol{A}\in \mathbb{R}{m\times 2}$ possesses the minimum condition number among all $\boldsymbol{A}\in \mathbb{R}{m\times 2}$. We are confident that these findings carry substantial implications for enhancing our understanding of phase retrieval.
- R. Alaifari and P. Grohs. “Phase retrieval in the general setting of continuous frames for Banach spaces.” SIAM J. Math. Anal., 41(3): 1895-1911, 2017.
- B. Alexeev, A. S. Bandeira, M. Fickus and D. G. Mixon. “Phase retrieval with polarization.” SIAM J. Imaging Sci., 7(1): 35-66, 2014.
- R. Balan and Y. Wang. “Invertibility and robustness of phaseless reconstruction.” Appl. Comput. Harmon. Anal., 38(3): 469-488, 2015.
- R. Balan, D. Zou. “On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem,” Linear Algebra and Applications, 496: 152-181, 2016.
- A. S. Bandeira, J. Cahill, D. G. Mixon and A. A. Nelson. “Saving phase: Injectivity and stability for phase retrieval.” Appl. Comput. Harmon. Anal., 37(1): 106-125, 2014.
- J. Cahill, P. G. Casazza and I. Daubechies. “Phase retrieval in infinite-dimensional Hilbert spaces.” Trans. Amer. Math. Soc. Ser. B., 3(3): 63-76, 2016.
- E. Candès, T. Strohmer and V. Voroninski. “Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming.” Comm. Pure Appl. Math., 66(8): 1241-1274, 2013.
- A. Conca, D. Edidin, M. Hering and C. Vinzant. “An algebraic characterization of injectivity in phase retrieval.” Appl. Comput. Harmon. Anal., 38(2):346-356, 2015.
- K. R. Davidson and S. J. Szarek. “Local operator theory, random matrices and Banach spaces.” Handbook of the geometry of Banach spaces, 317-366, 2001.
- D. Davis, D. Drusvyatskiy, and C. Paquette. “The nonsmooth landscape of phase retrieval.” IMA J. Numer. Anal., 40(4): 2652-2695, 2020.
- J. C. Duchi and F. Ruan. “Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval.” Inf. Inference, 8(3): 471-529, 2019.
- Y. C. Eldar and S. Mendelson. “Phase retrieval: Stability and recovery guarantees.” Appl. Comput. Harmon. Anal., 36(3): 473-494, 2014.
- S. Fourcart and H. Rauhut. “A mathematical introduction to compressed sensing.” Birkh𝑎¨normal-¨𝑎\ddot{\text{a}}over¨ start_ARG a end_ARGuser, 2013.
- P. Grohs, S. Koppensteiner, and M. Rathmair. “Phase retrieval: uniqueness and stability.” SIAM Review, 62(2): 301-350, 2020.
- M. Huang and Z. Xu. “The estimation performance of nonlinear least squares for phase retrieval.” IEEE Trans. Inf. Theory, 66(12): 7967-7977, 2020.
- R. Vershynin. “High-dimensional probability: An introduction with applications in data science.” U.K.: Cambridge University Press, 2018.
- Y. Wang and Z. Xu. “Generalized phase retrieval: measurement number, matrix recovery and beyond.” Appl. Comput. Harmon. Anal., 47(2): 423-446, 2019.
- Y. Xia and Z. Xu. “The performance of the amplitude-based model for complex phase retrieval.” Inf. Inference. 13(1): iaad053, 2024.