Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Color code decoder with improved scaling for correcting circuit-level noise (2404.07482v2)

Published 11 Apr 2024 in quant-ph

Abstract: Two-dimensional color codes are a promising candidate for fault-tolerant quantum computing, as they have high encoding rates, transversal implementation of logical Clifford gates, and resource-efficient magic state preparation schemes. However, decoding color codes presents a significant challenge due to their structure, where elementary errors violate three checks instead of just two (a key feature in surface code decoding), and the complexity of extracting syndrome is greater. We introduce an efficient color-code decoder that tackles these issues by combining two matching decoders for each color, generalized to handle circuit-level noise by employing detector error models. We provide comprehensive analyses of the decoder, covering its threshold and sub-threshold scaling both for bit-flip noise with ideal measurements and for circuit-level noise. Our simulations reveal that this decoding strategy nearly reaches the best possible scaling of logical failure ($p_\mathrm{fail} \sim p{d/2}$) for both noise models, where $p$ is the noise strength, in the regime of interest for fault-tolerant quantum computing. While its noise thresholds are comparable with other matching-based decoders for color codes ($8.2\%$ for bit-flip noise and $0.46\%$ for circuit-level noise), the scaling of logical failure rates below threshold significantly outperforms the best matching-based decoders.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. H. Bombin and M. A. Martin-Delgado. “Topological quantum distillation”. Phys. Rev. Lett. 97, 180501 (2006).
  2. Héctor Bombín. “Topological codes”. In Daniel A. Lidar and Todd A. Brun, editors, Quantum Error Correction. Chapter 19, pages 455–481. Cambridge (2013).
  3. “Quantum codes on a lattice with boundary” (1998). arXiv:quant-ph/9811052.
  4. “Topological quantum memory”. J. Math. Phys. 43, 4452–4505 (2002).
  5. “Fault-tolerant quantum computing with color codes” (2011). arXiv:1108.5738.
  6. “Low-overhead quantum computing with the color code” (2022). arxiv:2201.07806.
  7. “Demonstration of fault-tolerant universal quantum gate operations”. Nature 605, 675–680 (2022).
  8. “Implementing fault-tolerant entangling gates on the five-qubit code and the color code” (2022). arXiv:2208.01863.
  9. “Logical quantum processor based on reconfigurable atom arrays”. Nature 626, 58–65 (2024).
  10. “Demonstration of fault-tolerant Steane quantum error correction” (2023). arXiv:2312.09745.
  11. “Efficient fault-tolerant implementations of non-Clifford gates with reconfigurable atom arrays” (2024). arXiv:2312.09111.
  12. Nicolas Delfosse. “Decoding color codes by projection onto surface codes”. Phys. Rev. A 89, 012317 (2014).
  13. “Triangular color codes on trivalent graphs with flag qubits”. New J. Phys. 22, 023019 (2020).
  14. “Cost of universality: A comparative study of the overhead of state distillation and code switching with color codes”. PRX Quantum 2, 020341 (2021).
  15. “Efficient color code decoders in d≥2𝑑2d\geq 2italic_d ≥ 2 dimensions from toric code decoders”. Quantum 7, 929 (2023).
  16. “Facilitating practical fault-tolerant quantum computing based on color codes” (2023). arXiv:2309.05222.
  17. “Decoder for the triangular color code by matching on a Möbius strip”. PRX Quantum 3, 010310 (2022).
  18. “New circuits and an open source decoder for the color code” (2023). arXiv:2312.08813.
  19. Christopher T. Chubb. “General tensor network decoding of 2D Pauli codes” (2021). arXiv:2101.04125.
  20. “Highly accurate decoder for topological color codes with simulated annealing” (2023). arXiv:2303.01348.
  21. “Decoding quantum color codes with MaxSAT” (2023). arXiv:2303.14237.
  22. “Trellis decoding for qudit stabilizer codes and its application to qubit topological codes” (2022). arXiv:2106.08251.
  23. “Advantages of versatile neural-network decoding for topological codes”. Phys. Rev. A 99, 052351 (2019).
  24. “Almost-linear time decoding algorithm for topological codes”. Quantum 5, 595 (2021).
  25. “Efficient decoding of topological color codes”. Phys. Rev. A 85, 022317 (2012).
  26. “Tensor network decoding beyond 2D” (2023). arXiv:2310.10722.
  27. “Universal hardware-efficient topological measurement-based quantum computation via color-code-based cluster states”. Phys. Rev. Res. 4, 013010 (2022).
  28. Seok-Hyung Lee. “color-code-stim”. https://github.com/seokhyung-lee/color-code-stim (2024).
  29. Austin G. Fowler. “Two-dimensional color-code quantum computation”. Phys. Rev. A 83, 1–8 (2011).
  30. “Hardness of decoding quantum stabilizer codes”. IEEE Trans. Inf. Theory 61, 5209–5223 (2015).
  31. Jack Edmonds. “Paths, trees, and flowers”. Can. J. of Math. 17, 449–467 (1965).
  32. Craig Gidney. “Stim: a fast stabilizer circuit simulator”. Quantum 5, 497 (2021).
  33. Oscar Higgott. “PyMatching: A python package for decoding quantum codes with minimum-weight perfect matching”. ACM Trans. Quantum Comput.3 (2022).
  34. “Statsmodels: Econometric and statistical modeling with python”. In 9th Python in Science Conference.  (2010).
  35. “Universal quantum computation with ideal clifford gates and noisy ancillas”. Phys. Rev. A 71, 022316 (2005).
  36. Daniel Litinski. “Magic state distillation: Not as costly as you think”. Quantum 3, 205 (2019-12-02). arxiv:1905.06903.
  37. “Anyon condensation and the color code”. PRX Quantum 5, 010342 (2024).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com