Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Modified Depolarization Approach for Efficient Quantum Machine Learning (2404.07330v1)

Published 10 Apr 2024 in quant-ph and cs.LG

Abstract: Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite the progress, challenges persist due to system noise, errors, and decoherence that complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system's noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. We propose a modified representation for a single-qubit depolarization channel with two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per execution of a channel. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model's accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.
  2. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.
  3. Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum speed-up in supervised machine learning,” Nature Physics, vol. 17, no. 9, pp. 1013–1017, 2021.
  4. M. Sajjan, S. H. Sureshbabu, and S. Kais, “Quantum machine-learning for eigenstate filtration in two-dimensional materials,” Journal of the American Chemical Society, vol. 143, no. 44, pp. 18 426–18 445, 2021.
  5. X.-D. Cai, D. Wu, Z.-E. Su, M.-C. Chen, X.-L. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Entanglement-based machine learning on a quantum computer,” Physical review letters, vol. 114, no. 11, p. 110504, 2015.
  6. C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, and L. Wossnig, “Quantum machine learning: a classical perspective,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2209, p. 20170551, 2018.
  7. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
  8. J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics, vol. 18, no. 2, p. 023023, 2016.
  9. P. Rebentrost, M. Schuld, L. Wossnig, F. Petruccione, and S. Lloyd, “Quantum gradient descent and newton’s method for constrained polynomial optimization,” New Journal of Physics, vol. 21, 2016.
  10. L. Bittel and M. Kliesch, “Training variational quantum algorithms is np-hard.” Physical review letters, vol. 127 12, p. 120502, 2021.
  11. P. Rebentrost and S. Lloyd, “Quantum computational finance: quantum algorithm for portfolio optimization,” arXiv: Quantum Physics, 2018.
  12. A. Broadbent and C. Schaffner, “Quantum cryptography beyond quantum key distribution,” Designs, Codes, and Cryptography, vol. 78, pp. 351 – 382, 2015.
  13. V. Padamvathi, B. Vardhan, and A. V. Krishna, “Quantum cryptography and quantum key distribution protocols: A survey,” 2016 IEEE 6th International Conference on Advanced Computing (IACC), pp. 556–562, 2016.
  14. H. Lai, M. Luo, J. Pieprzyk, J. Zhang, L. Pan, S. Li, and M. Orgun, “Fast and simple high-capacity quantum cryptography with error detection,” Scientific Reports, vol. 7, 2017.
  15. S. Pirandola, U. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” arXiv: Quantum Physics, 2019.
  16. A. Harrow and A. Montanaro, “Quantum computational supremacy,” Nature, vol. 549, pp. 203–209, 2017.
  17. J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
  18. Y. Du, M. Hsieh, T. Liu, S. You, and D. Tao, “Learnability of quantum neural networks,” PRX Quantum, 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.040337
  19. A. Cross, G. Smith, and J. Smolin, “Quantum learning robust against noise,” Physical Review A, vol. 92, p. 012327, 2014.
  20. Y. Du, M. Hsieh, T. Liu, D. Tao, and N. Liu, “Quantum noise protects quantum classifiers against adversaries,” Physical Review Research, 2021. [Online]. Available: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.023153
  21. J. Huang, Y. Tsai, C. Yang, C. Su, and …, “Certified robustness of quantum classifiers against adversarial examples through quantum noise,” ICASSP 2023-2023 …, 2023, query date: 2024-01-23 15:43:50. [Online]. Available: https://ieeexplore.ieee.org/iel7/10094559/10094560/10095030.pdf
  22. M. T. West, S.-L. Tsang, J. S. Low, C. D. Hill, C. Leckie, L. C. Hollenberg, S. M. Erfani, and M. Usman, “Towards quantum enhanced adversarial robustness in machine learning,” Nature Machine Intelligence, pp. 1–9, 2023.
  23. S. Lu, L.-M. Duan, and D.-L. Deng, “Quantum adversarial machine learning,” Physical Review Research, vol. 2, no. 3, p. 033212, 2020.
  24. A. Skolik, S. Mangini, T. Bäck, and …, “Robustness of quantum reinforcement learning under hardware errors,” EPJ Quantum …, 2023, query date: 2024-01-23 15:43:50. [Online]. Available: https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-023-00166-1
  25. T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent advances in adversarial training for adversarial robustness,” arXiv preprint arXiv:2102.01356, 2021.
  26. D. Kang, Y. Sun, T. Brown, D. Hendrycks, and J. Steinhardt, “Transfer of adversarial robustness between perturbation types,” arXiv preprint arXiv:1905.01034, 2019.
  27. H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, “Power of data in quantum machine learning,” Nature communications, vol. 12, no. 1, p. 2631, 2021.
  28. X. Wang, Y. Du, Y. Luo, and D. Tao, “Towards understanding the power of quantum kernels in the nisq era,” Quantum, 2021. [Online]. Available: https://quantum-journal.org/papers/q-2021-08-30-531/
  29. T. Piskor, J. Reiner, S. Zanker, N. Vogt, M. Marthaler, and …, “Using gradient-based algorithms to determine ground-state energies on a quantum computer,” Physical Review A, 2022, query date: 2024-01-23 15:43:50. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.062415
  30. J. R. Wootton and D. Loss, “High threshold error correction for the surface code.” Physical review letters, vol. 109 16, p. 160503, 2012.
  31. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Physical Review A, vol. 86, no. 3, p. 032324, 2012.
  32. M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong, “Mitigating depolarizing noise on quantum computers with noise-estimation circuits,” Physical review letters, vol. 127, no. 27, p. 270502, 2021.
  33. Z. Cai, “Multi-exponential error extrapolation and combining error mitigation techniques for nisq applications,” npj Quantum Information, vol. 7, pp. 1–12, 2020.
  34. T. Haug, C. Self, and M. Kim, “Quantum machine learning of large datasets using randomized measurements,” Machine Learning: Science and …, 2023. [Online]. Available: https://iopscience.iop.org/article/10.1088/2632-2153/acb0b4/meta
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com