Papers
Topics
Authors
Recent
2000 character limit reached

Peierls Transition in Gross-Neveu Model from Bethe Ansatz

Published 10 Apr 2024 in hep-th | (2404.07307v2)

Abstract: The two-dimensional Gross-Neveu model is anticipated to undergo a crystalline phase transition at high baryon charge densities. This conclusion is drawn from the mean-field approximation, which closely resembles models of Peierls instability. We demonstrate that this transition indeed occurs when both the rank of the symmetry group and the dimension of the particle representation contributing to the baryon density are large (the large-N limit). We derive this result through the exact solution of the model, developing the large-N limit of the Bethe Ansatz. Our analytical construction of the large-N solution of the Bethe Ansatz equations aligns perfectly with the periodic (finite-gap) solution of the Korteweg-de Vries (KdV) of the mean-field analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
  2. A. B. Zamolodchikov and A. B. Zamolodchikov, Annals Phys. 120, 253 (1979).
  3. M. Karowski and H. J. Thun, Nucl. Phys. B 190, 61 (1981).
  4. M. Thies and K. Urlichs, Phys. Rev. D 67, 125015 (2003), arXiv:hep-th/0302092 .
  5. M. Thies, J. Phys. A 39, 12707 (2006), arXiv:hep-th/0601049 .
  6. R. E. Peierls, Quantum theory of solids (Oxford University Press, 1955).
  7. H. Fröhlich, Proc. R. Soc. A223, 296 (1954).
  8. B. Horovitz, Phys. Rev. Lett. 46, 742 (1981).
  9. M. Nakahara and K. Maki, Phys. Rev. B 24, 1045 (1981).
  10. S. Brazovskii and N. Kirova, Sov. Sci. Rev. A 5, 99 (1984).
  11. E. Witten, Nucl. Phys. B 145, 110 (1978a).
  12. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971).
  13. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
  14. E. Witten, Nucl. Phys. B 142, 285 (1978b).
  15. R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
  16. A. Chodos and H. Minakata, Nucl. Phys. B 490, 687 (1997), arXiv:hep-th/9610150 .
  17. M. Mariño and T. Reis, JHEP 04, 160 (2020), arXiv:1909.12134 [hep-th] .
  18. F. Gakhov, Boundary value problems (Dover Publications, 1990).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.