Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds and guarantees for learning and entanglement (2404.07277v1)

Published 10 Apr 2024 in quant-ph

Abstract: Information theory provides tools to predict the performance of a learning algorithm on a given dataset. For instance, the accuracy of learning an unknown parameter can be upper bounded by reducing the learning task to hypothesis testing for a discrete random variable, with Fano's inequality then stating that a small conditional entropy between a learner's observations and the unknown parameter is necessary for successful estimation. This work first extends this relationship by demonstrating that a small conditional entropy is also sufficient for successful learning, thereby establishing an information-theoretic lower bound on the accuracy of a learner. This connection between information theory and learning suggests that we might similarly apply quantum information theory to characterize learning tasks involving quantum systems. Observing that the fidelity of a finite-dimensional quantum system with a maximally entangled state (the singlet fraction) generalizes the success probability for estimating a discrete random variable, we introduce an entanglement manipulation task for infinite-dimensional quantum systems that similarly generalizes classical learning. We derive information-theoretic bounds for succeeding at this task in terms of the maximal singlet fraction of an appropriate finite-dimensional discretization. As classical learning is recovered as a special case of this task, our analysis suggests a deeper relationship at the interface of learning, entanglement, and information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. C.E. Shannon “A mathematical theory of communication” In The Bell System Technical Journal 27.3, 1948, pp. 379–423 DOI: 10.1002/j.1538-7305.1948.tb01338.x
  2. Robert Fano “Class notes for MIT course 6.574: Transmission of information” MIT, 1952
  3. I.A. Ibragimov, R.Z. Has’minskii and Samuel Kotz “Statistical estimation: Asymptotic theory” In Statistical estimation : asymptotic theory, Stochastic Modelling and Applied Probability, 16 New York: Springer Science+Business Media, LLC, 1981
  4. Emmanuel J. Candes and Terence Tao “Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?” In IEEE Trans. Inf. Theory 52.12, 2006, pp. 5406–5425 DOI: 10.1109/TIT.2006.885507
  5. D.L. Donoho “Compressed sensing” In IEEE Trans. Inf. Theory 52.4, 2006, pp. 1289–1306 DOI: 10.1109/TIT.2006.871582
  6. Emmanuel J. Candes and Terence Tao “The Power of Convex Relaxation: Near-Optimal Matrix Completion” In IEEE Trans. Inf. Theory 56.5, 2010, pp. 2053–2080 DOI: 10.1109/TIT.2010.2044061
  7. “Exact matrix completion via convex optimization” In Found Comput Math 9, 2009, pp. 717–772 DOI: https://doi.org/10.1007/s10208-009-9045-5
  8. Wei Wang, Martin J. Wainwright and Kannan Ramchandran “Information-theoretic limits on sparse support recovery: Dense versus sparse measurements” In 2008 IEEE International Symposium on Information Theory, 2008, pp. 2197–2201 DOI: 10.1109/ISIT.2008.4595380
  9. Garvesh Raskutti, Martin J. Wainwright and Bin Yu “Minimax Rates of Estimation for High-Dimensional Linear Regression Over ℓqsubscriptℓ𝑞\ell_{q}roman_ℓ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT -Balls” In IEEE Trans. Inf. Theory 57.10, 2011, pp. 6976–6994 DOI: 10.1109/TIT.2011.2165799
  10. Po-Ling Loh and Martin J. Wainwright “Corrupted and missing predictors: Minimax bounds for high-dimensional linear regression” In 2012 IEEE International Symposium on Information Theory Proceedings Cambridge, MA, USA: IEEE, 2012, pp. 2601–2605 DOI: 10.1109/ISIT.2012.6283989
  11. “Quantum State Tomography via Compressed Sensing” In Phys. Rev. Lett. 105 American Physical Society, 2010, pp. 150401 DOI: 10.1103/PhysRevLett.105.150401
  12. “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels” In Phys. Rev. Lett. 76 American Physical Society, 1996, pp. 722–725 DOI: 10.1103/PhysRevLett.76.722
  13. “Mixed-state entanglement and quantum error correction” In Phys. Rev. A 54 American Physical Society, 1996, pp. 3824–3851 DOI: 10.1103/PhysRevA.54.3824
  14. “Fidelity of mixed states of two qubits” In Phys. Rev. A 66.2 American Physical Society (APS), 2002 DOI: 10.1103/physreva.66.022307
  15. Michał Horodecki, Paweł Horodecki and Ryszard Horodecki “General teleportation channel, singlet fraction, and quasidistillation” In Phys. Rev. A 60 American Physical Society, 1999, pp. 1888–1898 DOI: 10.1103/PhysRevA.60.1888
  16. Robert Koenig, Renato Renner and Christian Schaffner “The operational meaning of min- and max-entropy” In IEEE Trans. Inf. Theory 55.9, 2009, pp. 4337–4347 DOI: 10.1109/TIT.2009.2025545
  17. “Power of data in quantum machine learning” In Nat. Commun. 12.1 Springer ScienceBusiness Media LLC, 2021 DOI: 10.1038/s41467-021-22539-9
  18. “Generalization in quantum machine learning from few training data” In Nat. Commun. 13.1, 2022, pp. 4919 DOI: 10.1038/s41467-022-32550-3
  19. “Generalization despite overfitting in quantum machine learning models” In Quantum 7 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2023, pp. 1210 DOI: 10.22331/q-2023-12-20-1210
  20. “Out-of-distribution generalization for learning quantum dynamics” In Nat. Commun. 14.1 Springer ScienceBusiness Media LLC, 2023 DOI: 10.1038/s41467-023-39381-w
  21. Elies Gil-Fuster, Jens Eisert and Carlos Bravo-Prieto “Understanding quantum machine learning also requires rethinking generalization” In Nat. Commun. 15.1 Springer ScienceBusiness Media LLC, 2024 DOI: 10.1038/s41467-024-45882-z
  22. Leonardo Banchi, Jason Pereira and Stefano Pirandola “Generalization in Quantum Machine Learning: A Quantum Information Standpoint” In PRX Quantum 2 American Physical Society, 2021, pp. 040321 DOI: 10.1103/PRXQuantum.2.040321
  23. Hsin-Yuan Huang, Richard Kueng and John Preskill “Information-Theoretic Bounds on Quantum Advantage in Machine Learning” In Phys. Rev. Lett. 126 American Physical Society, 2021, pp. 190505 DOI: 10.1103/PhysRevLett.126.190505
  24. “Information-theoretic generalization bounds for learning from quantum data” arXiv:2311.05529 arXiv, 2023 arXiv:2311.05529 [quant-ph]
  25. Vladimir Kovalevsky “The problem of character recognition from the point of view of mathematical statistics” In Character Readers and Pattern Recognition Spartan New York, 1968, pp. 3–30
  26. “Probability of error, equivocation, and the Chernoff bound” In IEEE Trans. Inf. Theory 16.4, 1970, pp. 368–372 DOI: 10.1109/TIT.1970.1054466
  27. “Relations between entropy and error probability” In IEEE Trans. Inf. Theory 40.1, 1994, pp. 259–266 DOI: 10.1109/18.272494
  28. Benjamin Schumacher “Quantum coding” In Phys. Rev. A 51 American Physical Society, 1995, pp. 2738–2747 DOI: 10.1103/PhysRevA.51.2738
  29. A. Jamiołkowski “Linear transformations which preserve trace and positive semidefiniteness of operators” In Reports on Mathematical Physics 3.4, 1972, pp. 275–278 DOI: https://doi.org/10.1016/0034-4877(72)90011-0
  30. Man-Duen Choi “Completely positive linear maps on complex matrices” In Linear Algebra and its Applications 10.3, 1975, pp. 285–290 DOI: https://doi.org/10.1016/0024-3795(75)90075-0
  31. John Watrous “Is there any connection between the diamond norm and the distance of the associated states?” https://cstheory.stackexchange.com/q/4920, Theoretical Computer Science Stack Exchange
  32. John Watrous “Advanced topics in Quantum Information Theory” Available at https://cs.uwaterloo.ca/~watrous/QIT-notes/, Lecture Notes, 2020
  33. John Watrous “The theory of quantum information” Cambridge university press, 2018
  34. Benjamin Schumacher “Sending entanglement through noisy quantum channels” In Phys. Rev. A 54 American Physical Society, 1996, pp. 2614–2628 DOI: 10.1103/PhysRevA.54.2614
  35. “Discriminating States: The Quantum Chernoff Bound” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 160501 DOI: 10.1103/PhysRevLett.98.160501
  36. “Asymptotic Error Rates in Quantum Hypothesis Testing” In Comm. Math. Phys. 279.1, 2008, pp. 251–283 DOI: 10.1007/s00220-008-0417-5
  37. Leslie G Valiant “A theory of the learnable” In Communications of the ACM 27.11 ACM New York, NY, USA, 1984, pp. 1134–1142
  38. “Quantum metrology in the finite-sample regime” In Quantum Information Processing 2024, 2024 arXiv:2307.06370 [quant-ph]
  39. Thomas M Cover “Elements of information theory” John Wiley & Sons, 1999
  40. “Power of data in quantum machine learning” In Nat. Commun. 12.1 Nature Publishing Group UK London, 2021, pp. 2631
  41. Jonas M. Kübler, Simon Buchholz and Bernhard Schölkopf “The Inductive Bias of Quantum Kernels” In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021, pp. 12661–12673 arXiv:2106.03747 [quant-ph]
  42. Yunchao Liu, Srinivasan Arunachalam and Kristan Temme “A rigorous and robust quantum speed-up in supervised machine learning” In Nature Physics 17.9 Springer ScienceBusiness Media LLC, 2021, pp. 1013–1017 DOI: 10.1038/s41567-021-01287-z
  43. Casper Gyurik, Chris Cade and Vedran Dunjko “Towards quantum advantage via topological data analysis” In Quantum 6 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 855 DOI: 10.22331/q-2022-11-10-855
  44. “Provably efficient machine learning for quantum many-body problems” In Science 377.6613 American Association for the Advancement of Science (AAAS), 2022 DOI: 10.1126/science.abk3333
  45. “Exponential separations between classical and quantum learners”, 2023 arXiv:2306.16028 [quant-ph]
  46. “Quantum-assisted quantum compiling” In Quantum 3 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019, pp. 140 DOI: 10.22331/q-2019-05-13-140
  47. “Reformulation of the No-Free-Lunch Theorem for Entangled Datasets” In Phys. Rev. Lett. 128 American Physical Society, 2022, pp. 070501 DOI: 10.1103/PhysRevLett.128.070501
  48. Matthias C. Caro “Learning Quantum Processes and Hamiltonians via the Pauli Transfer Matrix”, 2023 arXiv:2212.04471 [quant-ph]
  49. Hsin-Yuan Huang, Sitan Chen and John Preskill “Learning to Predict Arbitrary Quantum Processes” In PRX Quantum 4 American Physical Society, 2023, pp. 040337 DOI: 10.1103/PRXQuantum.4.040337
  50. “The power and limitations of learning quantum dynamics incoherently”, 2023 arXiv:2303.12834 [quant-ph]
  51. Aram W. Harrow, Avinatan Hassidim and Seth Lloyd “Quantum Algorithm for Linear Systems of Equations” In Phys. Rev. Lett. 103 American Physical Society, 2009, pp. 150502 DOI: 10.1103/PhysRevLett.103.150502
  52. Nader H. Bshouty and Jeffrey C. Jackson “Learning DNF over the Uniform Distribution Using a Quantum Example Oracle” In Proceedings of the Eighth Annual Conference on Computational Learning Theory, COLT 1995 New York, NY, USA: Association for Computing Machinery, 1995, pp. 118–127 DOI: 10.1145/225298.225312
  53. Rocco A. Servedio and Steven J. Gortler “Equivalences and Separations Between Quantum and Classical Learnability” In SIAM Journal on Computing 33.5, 2004, pp. 1067–1092 DOI: 10.1137/S0097539704412910
  54. Alp Atıcı and Rocco A. Servedio “Quantum Algorithms for Learning and Testing Juntas” In Quantum Information Processing 6.5 Springer ScienceBusiness Media LLC, 2007, pp. 323–348 DOI: 10.1007/s11128-007-0061-6
  55. Srinivasan Arunachalam and Ronald De Wolf “Optimal quantum sample complexity of learning algorithms” In The Journal of Machine Learning Research 19.1 JMLR. org, 2018, pp. 2879–2878
  56. Dana Angluin “Queries and concept learning” In Machine learning 2 Springer, 1988, pp. 319–342
  57. “Quantum Identification of Boolean Oracles” In Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science (STACS 2004) Springer, Berlin, Heidelberg, pp. 105–116 DOI: https://doi.org/10.1007/978-3-540-24749-4˙10
  58. Robin Kothari “An optimal quantum algorithm for the oracle identification problem” In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014) 25 Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 482–493 DOI: 10.4230/LIPIcs.STACS.2014.482
  59. A.Yu. Khrennikov “Two-particle wave function as an integral operator and the random field approach to quantum correlations” In Theoretical and Mathematical Physics 164.3, 2010, pp. 1156–1162 DOI: 10.1007/s11232-010-0094-3
  60. Jens Eisert, Christoph Simon and Martin B Plenio “On the quantification of entanglement in infinite-dimensional quantum systems” In Journal of Physics A: Mathematical and General 35.17 IOP Publishing, 2002, pp. 3911
  61. “Introduction to the basics of entanglement theory in continuous-variable systems” In International Journal of Quantum Information 1.04 World Scientific, 2003, pp. 479–506
  62. A.S. Holevo, Maksim Shirokov and Reinhard Werner “On the notion of entanglement in Hilbert spaces” In Russian Mathematical Surveys 60.2 London: London Mathematical Society; distributed by Cleaver-Hume Press,[1960-, 2005, pp. 359–360
  63. “Entanglement in continuous-variable systems: recent advances and current perspectives” In Journal of Physics A: Mathematical and Theoretical 40.28, 2007, pp. 7821 DOI: 10.1088/1751-8113/40/28/S01
  64. Fabian Furrer, Johan Åberg and Renato Renner “Min- and Max-Entropy in Infinite Dimensions” In Comm. Math. Phys. 306.1, 2011, pp. 165–186 DOI: 10.1007/s00220-011-1282-1
  65. “Operational Quantification of Continuous-Variable Quantum Resources” In Phys. Rev. Lett. 126.11 American Physical Society (APS), 2021 DOI: 10.1103/physrevlett.126.110403
  66. “Operational Characterization of Infinite-Dimensional Quantum Resources” In Phys. Rev. Lett. 127.25 American Physical Society (APS), 2021 DOI: 10.1103/physrevlett.127.250401
  67. “Entanglement cost for infinite-dimensional physical systems”, 2024 arXiv:2401.09554 [quant-ph]
  68. A.S. Holevo “The Choi–Jamiolkowski forms of quantum Gaussian channels” In Journal of Mathematical Physics 52.4 AIP Publishing, 2011 DOI: 10.1063/1.3581879
  69. A.S. Holevo, M.E. Shirokov and R.F. Werner “Separability and Entanglement-Breaking in Infinite Dimensions”, 2005 arXiv:quant-ph/0504204 [quant-ph]
  70. A.S. Holevo “Statistical structure of quantum theory”, Lecture Notes in Physics Monographs 67 Berlin Heidelberg: Springer, 2001 DOI: https://doi.org/10.1007/3-540-44998-1
  71. David Haussler “Decision theoretic generalizations of the PAC model for neural net and other learning applications” In Information and Computation 100.1, 1992, pp. 78–150 DOI: https://doi.org/10.1016/0890-5401(92)90010-D
  72. Alastair Kay “Quantikz” Royal Holloway, University of London, 2019 DOI: 10.17637/RH.7000520
  73. Stephane Attal “Lectures in Quantum Noise Theory” URL: http://math.univ-lyon1.fr/~attal/chapters.html
  74. W.Forrest Stinespring “Positive Functions on C*-Algebras” In Proceedings of the American Mathematical Society 6.2 American Mathematical Society, 1955, pp. 211–216 URL: http://www.jstor.org/stable/2032342
  75. “States, Effects, and Operations Fundamental Notions of Quantum Theory”, 1983 DOI: 10.1007/3-540-12732-1

Summary

We haven't generated a summary for this paper yet.