Bounds and guarantees for learning and entanglement (2404.07277v1)
Abstract: Information theory provides tools to predict the performance of a learning algorithm on a given dataset. For instance, the accuracy of learning an unknown parameter can be upper bounded by reducing the learning task to hypothesis testing for a discrete random variable, with Fano's inequality then stating that a small conditional entropy between a learner's observations and the unknown parameter is necessary for successful estimation. This work first extends this relationship by demonstrating that a small conditional entropy is also sufficient for successful learning, thereby establishing an information-theoretic lower bound on the accuracy of a learner. This connection between information theory and learning suggests that we might similarly apply quantum information theory to characterize learning tasks involving quantum systems. Observing that the fidelity of a finite-dimensional quantum system with a maximally entangled state (the singlet fraction) generalizes the success probability for estimating a discrete random variable, we introduce an entanglement manipulation task for infinite-dimensional quantum systems that similarly generalizes classical learning. We derive information-theoretic bounds for succeeding at this task in terms of the maximal singlet fraction of an appropriate finite-dimensional discretization. As classical learning is recovered as a special case of this task, our analysis suggests a deeper relationship at the interface of learning, entanglement, and information.
- C.E. Shannon “A mathematical theory of communication” In The Bell System Technical Journal 27.3, 1948, pp. 379–423 DOI: 10.1002/j.1538-7305.1948.tb01338.x
- Robert Fano “Class notes for MIT course 6.574: Transmission of information” MIT, 1952
- I.A. Ibragimov, R.Z. Has’minskii and Samuel Kotz “Statistical estimation: Asymptotic theory” In Statistical estimation : asymptotic theory, Stochastic Modelling and Applied Probability, 16 New York: Springer Science+Business Media, LLC, 1981
- Emmanuel J. Candes and Terence Tao “Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?” In IEEE Trans. Inf. Theory 52.12, 2006, pp. 5406–5425 DOI: 10.1109/TIT.2006.885507
- D.L. Donoho “Compressed sensing” In IEEE Trans. Inf. Theory 52.4, 2006, pp. 1289–1306 DOI: 10.1109/TIT.2006.871582
- Emmanuel J. Candes and Terence Tao “The Power of Convex Relaxation: Near-Optimal Matrix Completion” In IEEE Trans. Inf. Theory 56.5, 2010, pp. 2053–2080 DOI: 10.1109/TIT.2010.2044061
- “Exact matrix completion via convex optimization” In Found Comput Math 9, 2009, pp. 717–772 DOI: https://doi.org/10.1007/s10208-009-9045-5
- Wei Wang, Martin J. Wainwright and Kannan Ramchandran “Information-theoretic limits on sparse support recovery: Dense versus sparse measurements” In 2008 IEEE International Symposium on Information Theory, 2008, pp. 2197–2201 DOI: 10.1109/ISIT.2008.4595380
- Garvesh Raskutti, Martin J. Wainwright and Bin Yu “Minimax Rates of Estimation for High-Dimensional Linear Regression Over ℓqsubscriptℓ𝑞\ell_{q}roman_ℓ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT -Balls” In IEEE Trans. Inf. Theory 57.10, 2011, pp. 6976–6994 DOI: 10.1109/TIT.2011.2165799
- Po-Ling Loh and Martin J. Wainwright “Corrupted and missing predictors: Minimax bounds for high-dimensional linear regression” In 2012 IEEE International Symposium on Information Theory Proceedings Cambridge, MA, USA: IEEE, 2012, pp. 2601–2605 DOI: 10.1109/ISIT.2012.6283989
- “Quantum State Tomography via Compressed Sensing” In Phys. Rev. Lett. 105 American Physical Society, 2010, pp. 150401 DOI: 10.1103/PhysRevLett.105.150401
- “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels” In Phys. Rev. Lett. 76 American Physical Society, 1996, pp. 722–725 DOI: 10.1103/PhysRevLett.76.722
- “Mixed-state entanglement and quantum error correction” In Phys. Rev. A 54 American Physical Society, 1996, pp. 3824–3851 DOI: 10.1103/PhysRevA.54.3824
- “Fidelity of mixed states of two qubits” In Phys. Rev. A 66.2 American Physical Society (APS), 2002 DOI: 10.1103/physreva.66.022307
- Michał Horodecki, Paweł Horodecki and Ryszard Horodecki “General teleportation channel, singlet fraction, and quasidistillation” In Phys. Rev. A 60 American Physical Society, 1999, pp. 1888–1898 DOI: 10.1103/PhysRevA.60.1888
- Robert Koenig, Renato Renner and Christian Schaffner “The operational meaning of min- and max-entropy” In IEEE Trans. Inf. Theory 55.9, 2009, pp. 4337–4347 DOI: 10.1109/TIT.2009.2025545
- “Power of data in quantum machine learning” In Nat. Commun. 12.1 Springer ScienceBusiness Media LLC, 2021 DOI: 10.1038/s41467-021-22539-9
- “Generalization in quantum machine learning from few training data” In Nat. Commun. 13.1, 2022, pp. 4919 DOI: 10.1038/s41467-022-32550-3
- “Generalization despite overfitting in quantum machine learning models” In Quantum 7 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2023, pp. 1210 DOI: 10.22331/q-2023-12-20-1210
- “Out-of-distribution generalization for learning quantum dynamics” In Nat. Commun. 14.1 Springer ScienceBusiness Media LLC, 2023 DOI: 10.1038/s41467-023-39381-w
- Elies Gil-Fuster, Jens Eisert and Carlos Bravo-Prieto “Understanding quantum machine learning also requires rethinking generalization” In Nat. Commun. 15.1 Springer ScienceBusiness Media LLC, 2024 DOI: 10.1038/s41467-024-45882-z
- Leonardo Banchi, Jason Pereira and Stefano Pirandola “Generalization in Quantum Machine Learning: A Quantum Information Standpoint” In PRX Quantum 2 American Physical Society, 2021, pp. 040321 DOI: 10.1103/PRXQuantum.2.040321
- Hsin-Yuan Huang, Richard Kueng and John Preskill “Information-Theoretic Bounds on Quantum Advantage in Machine Learning” In Phys. Rev. Lett. 126 American Physical Society, 2021, pp. 190505 DOI: 10.1103/PhysRevLett.126.190505
- “Information-theoretic generalization bounds for learning from quantum data” arXiv:2311.05529 arXiv, 2023 arXiv:2311.05529 [quant-ph]
- Vladimir Kovalevsky “The problem of character recognition from the point of view of mathematical statistics” In Character Readers and Pattern Recognition Spartan New York, 1968, pp. 3–30
- “Probability of error, equivocation, and the Chernoff bound” In IEEE Trans. Inf. Theory 16.4, 1970, pp. 368–372 DOI: 10.1109/TIT.1970.1054466
- “Relations between entropy and error probability” In IEEE Trans. Inf. Theory 40.1, 1994, pp. 259–266 DOI: 10.1109/18.272494
- Benjamin Schumacher “Quantum coding” In Phys. Rev. A 51 American Physical Society, 1995, pp. 2738–2747 DOI: 10.1103/PhysRevA.51.2738
- A. Jamiołkowski “Linear transformations which preserve trace and positive semidefiniteness of operators” In Reports on Mathematical Physics 3.4, 1972, pp. 275–278 DOI: https://doi.org/10.1016/0034-4877(72)90011-0
- Man-Duen Choi “Completely positive linear maps on complex matrices” In Linear Algebra and its Applications 10.3, 1975, pp. 285–290 DOI: https://doi.org/10.1016/0024-3795(75)90075-0
- John Watrous “Is there any connection between the diamond norm and the distance of the associated states?” https://cstheory.stackexchange.com/q/4920, Theoretical Computer Science Stack Exchange
- John Watrous “Advanced topics in Quantum Information Theory” Available at https://cs.uwaterloo.ca/~watrous/QIT-notes/, Lecture Notes, 2020
- John Watrous “The theory of quantum information” Cambridge university press, 2018
- Benjamin Schumacher “Sending entanglement through noisy quantum channels” In Phys. Rev. A 54 American Physical Society, 1996, pp. 2614–2628 DOI: 10.1103/PhysRevA.54.2614
- “Discriminating States: The Quantum Chernoff Bound” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 160501 DOI: 10.1103/PhysRevLett.98.160501
- “Asymptotic Error Rates in Quantum Hypothesis Testing” In Comm. Math. Phys. 279.1, 2008, pp. 251–283 DOI: 10.1007/s00220-008-0417-5
- Leslie G Valiant “A theory of the learnable” In Communications of the ACM 27.11 ACM New York, NY, USA, 1984, pp. 1134–1142
- “Quantum metrology in the finite-sample regime” In Quantum Information Processing 2024, 2024 arXiv:2307.06370 [quant-ph]
- Thomas M Cover “Elements of information theory” John Wiley & Sons, 1999
- “Power of data in quantum machine learning” In Nat. Commun. 12.1 Nature Publishing Group UK London, 2021, pp. 2631
- Jonas M. Kübler, Simon Buchholz and Bernhard Schölkopf “The Inductive Bias of Quantum Kernels” In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021, pp. 12661–12673 arXiv:2106.03747 [quant-ph]
- Yunchao Liu, Srinivasan Arunachalam and Kristan Temme “A rigorous and robust quantum speed-up in supervised machine learning” In Nature Physics 17.9 Springer ScienceBusiness Media LLC, 2021, pp. 1013–1017 DOI: 10.1038/s41567-021-01287-z
- Casper Gyurik, Chris Cade and Vedran Dunjko “Towards quantum advantage via topological data analysis” In Quantum 6 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 855 DOI: 10.22331/q-2022-11-10-855
- “Provably efficient machine learning for quantum many-body problems” In Science 377.6613 American Association for the Advancement of Science (AAAS), 2022 DOI: 10.1126/science.abk3333
- “Exponential separations between classical and quantum learners”, 2023 arXiv:2306.16028 [quant-ph]
- “Quantum-assisted quantum compiling” In Quantum 3 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2019, pp. 140 DOI: 10.22331/q-2019-05-13-140
- “Reformulation of the No-Free-Lunch Theorem for Entangled Datasets” In Phys. Rev. Lett. 128 American Physical Society, 2022, pp. 070501 DOI: 10.1103/PhysRevLett.128.070501
- Matthias C. Caro “Learning Quantum Processes and Hamiltonians via the Pauli Transfer Matrix”, 2023 arXiv:2212.04471 [quant-ph]
- Hsin-Yuan Huang, Sitan Chen and John Preskill “Learning to Predict Arbitrary Quantum Processes” In PRX Quantum 4 American Physical Society, 2023, pp. 040337 DOI: 10.1103/PRXQuantum.4.040337
- “The power and limitations of learning quantum dynamics incoherently”, 2023 arXiv:2303.12834 [quant-ph]
- Aram W. Harrow, Avinatan Hassidim and Seth Lloyd “Quantum Algorithm for Linear Systems of Equations” In Phys. Rev. Lett. 103 American Physical Society, 2009, pp. 150502 DOI: 10.1103/PhysRevLett.103.150502
- Nader H. Bshouty and Jeffrey C. Jackson “Learning DNF over the Uniform Distribution Using a Quantum Example Oracle” In Proceedings of the Eighth Annual Conference on Computational Learning Theory, COLT 1995 New York, NY, USA: Association for Computing Machinery, 1995, pp. 118–127 DOI: 10.1145/225298.225312
- Rocco A. Servedio and Steven J. Gortler “Equivalences and Separations Between Quantum and Classical Learnability” In SIAM Journal on Computing 33.5, 2004, pp. 1067–1092 DOI: 10.1137/S0097539704412910
- Alp Atıcı and Rocco A. Servedio “Quantum Algorithms for Learning and Testing Juntas” In Quantum Information Processing 6.5 Springer ScienceBusiness Media LLC, 2007, pp. 323–348 DOI: 10.1007/s11128-007-0061-6
- Srinivasan Arunachalam and Ronald De Wolf “Optimal quantum sample complexity of learning algorithms” In The Journal of Machine Learning Research 19.1 JMLR. org, 2018, pp. 2879–2878
- Dana Angluin “Queries and concept learning” In Machine learning 2 Springer, 1988, pp. 319–342
- “Quantum Identification of Boolean Oracles” In Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science (STACS 2004) Springer, Berlin, Heidelberg, pp. 105–116 DOI: https://doi.org/10.1007/978-3-540-24749-4˙10
- Robin Kothari “An optimal quantum algorithm for the oracle identification problem” In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014) 25 Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 482–493 DOI: 10.4230/LIPIcs.STACS.2014.482
- A.Yu. Khrennikov “Two-particle wave function as an integral operator and the random field approach to quantum correlations” In Theoretical and Mathematical Physics 164.3, 2010, pp. 1156–1162 DOI: 10.1007/s11232-010-0094-3
- Jens Eisert, Christoph Simon and Martin B Plenio “On the quantification of entanglement in infinite-dimensional quantum systems” In Journal of Physics A: Mathematical and General 35.17 IOP Publishing, 2002, pp. 3911
- “Introduction to the basics of entanglement theory in continuous-variable systems” In International Journal of Quantum Information 1.04 World Scientific, 2003, pp. 479–506
- A.S. Holevo, Maksim Shirokov and Reinhard Werner “On the notion of entanglement in Hilbert spaces” In Russian Mathematical Surveys 60.2 London: London Mathematical Society; distributed by Cleaver-Hume Press,[1960-, 2005, pp. 359–360
- “Entanglement in continuous-variable systems: recent advances and current perspectives” In Journal of Physics A: Mathematical and Theoretical 40.28, 2007, pp. 7821 DOI: 10.1088/1751-8113/40/28/S01
- Fabian Furrer, Johan Åberg and Renato Renner “Min- and Max-Entropy in Infinite Dimensions” In Comm. Math. Phys. 306.1, 2011, pp. 165–186 DOI: 10.1007/s00220-011-1282-1
- “Operational Quantification of Continuous-Variable Quantum Resources” In Phys. Rev. Lett. 126.11 American Physical Society (APS), 2021 DOI: 10.1103/physrevlett.126.110403
- “Operational Characterization of Infinite-Dimensional Quantum Resources” In Phys. Rev. Lett. 127.25 American Physical Society (APS), 2021 DOI: 10.1103/physrevlett.127.250401
- “Entanglement cost for infinite-dimensional physical systems”, 2024 arXiv:2401.09554 [quant-ph]
- A.S. Holevo “The Choi–Jamiolkowski forms of quantum Gaussian channels” In Journal of Mathematical Physics 52.4 AIP Publishing, 2011 DOI: 10.1063/1.3581879
- A.S. Holevo, M.E. Shirokov and R.F. Werner “Separability and Entanglement-Breaking in Infinite Dimensions”, 2005 arXiv:quant-ph/0504204 [quant-ph]
- A.S. Holevo “Statistical structure of quantum theory”, Lecture Notes in Physics Monographs 67 Berlin Heidelberg: Springer, 2001 DOI: https://doi.org/10.1007/3-540-44998-1
- David Haussler “Decision theoretic generalizations of the PAC model for neural net and other learning applications” In Information and Computation 100.1, 1992, pp. 78–150 DOI: https://doi.org/10.1016/0890-5401(92)90010-D
- Alastair Kay “Quantikz” Royal Holloway, University of London, 2019 DOI: 10.17637/RH.7000520
- Stephane Attal “Lectures in Quantum Noise Theory” URL: http://math.univ-lyon1.fr/~attal/chapters.html
- W.Forrest Stinespring “Positive Functions on C*-Algebras” In Proceedings of the American Mathematical Society 6.2 American Mathematical Society, 1955, pp. 211–216 URL: http://www.jstor.org/stable/2032342
- “States, Effects, and Operations Fundamental Notions of Quantum Theory”, 1983 DOI: 10.1007/3-540-12732-1