Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on the Integration of Generative AI for Critical Thinking in Mobile Networks (2404.06946v1)

Published 10 Apr 2024 in cs.AI

Abstract: In the near future, mobile networks are expected to broaden their services and coverage to accommodate a larger user base and diverse user needs. Thus, they will increasingly rely on AI to manage network operation and control costs, undertaking complex decision-making roles. This shift will necessitate the application of techniques that incorporate critical thinking abilities, including reasoning and planning. Symbolic AI techniques already facilitate critical thinking based on existing knowledge. Yet, their use in telecommunications is hindered by the high cost of mostly manual curation of this knowledge and high computational complexity of reasoning tasks. At the same time, there is a spurt of innovations in industries such as telecommunications due to Generative AI (GenAI) technologies, operating independently of human-curated knowledge. However, their capacity for critical thinking remains uncertain. This paper aims to address this gap by examining the current status of GenAI algorithms with critical thinking capabilities and investigating their potential applications in telecom networks. Specifically, the aim of this study is to offer an introduction to the potential utilization of GenAI for critical thinking techniques in mobile networks, while also establishing a foundation for future research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (107)
  1. 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface,” Technical Reprot (TR) 38.843, 3rd Generation Partnership Project (3GPP), 12 2024. Version 18.0.0.
  2. M. E. Morocho Cayamcela and W. Lim, “Artificial intelligence in 5g technology: A survey,” in 2018 International Conference on Information and Communication Technology Convergence (ICTC), pp. 860–865, 2018.
  3. G. P. Koudouridis, S. Shalmashi, and R. Moosavi, “An evaluation survey of knowledge-based approaches in telecommunication applications,” Telecom, vol. 5, no. 1, pp. 98–121, 2024.
  4. M. Cummings, “Rethinking the maturity of artificial intelligence in safety-critical settings,” AI Magazine, vol. 42, pp. 6–15, Apr. 2021.
  5. D. Yu, B. Yang, D. Liu, H. Wang, and S. Pan, “A survey on neural-symbolic learning systems,” Neural Networks, vol. 166, pp. 105–126, 2023.
  6. A. Karapantelakis, P. Alizadeh, A. Alabassi, K. Dey, and A. Nikou, “Generative AI in mobile networks: a survey,” Annals of Telecommunications, vol. 79, pp. 15–33, Feb. 2024.
  7. A. Karapantelakis, M. Thakur, A. Nikou, F. Moradi, C. Orlog, F. Gaim, H. Holm, D. Nimara, and V. Huang, “Using large language models to understand telecom standards,” arXiv preprint (soon link), 2024.
  8. J. Huang and K. C.-C. Chang, “Towards reasoning in large language models: A survey,” 2023.
  9. MIT Press, 1987.
  10. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems (Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.
  11. D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
  12. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.
  13. W. X. Zhao, K. Zhou, J. Li, and et al., “A Survey of Large Language Models,” Nov. 2023. arXiv:2303.18223 [cs].
  14. J. Sun, C. Zheng, E. Xie, and et al., “A survey of reasoning with foundation models,” Jan. 2024. arXiv:2312.11562 [cs].
  15. S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, and E. Chen, “A survey on multimodal large language models,” 2023.
  16. A. Q. Jiang, A. Sablayrolles, and A. R. et al., “Mixtral of experts,” 2024.
  17. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” CoRR, vol. abs/2006.11239, 2020.
  18. Y. Liu, T. Han, and S. M. et al., “Summary of chatgpt-related research and perspective towards the future of large language models,” Meta-Radiology, vol. 1, no. 2, p. 100017, 2023.
  19. A. Jabbar, X. Li, and B. Omar, “A survey on generative adversarial networks: Variants, applications, and training,” 2020.
  20. C. Chadebec and S. Allassonnière, “Data augmentation with variational autoencoders and manifold sampling,” 2021.
  21. A. A. Pol, V. Berger, C. Germain, G. Cerminara, and M. Pierini, “Anomaly detection with conditional variational autoencoders,” in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1651–1657, 2019.
  22. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” 2024.
  23. A. Patel and S. Jain, “Formalisms of representing knowledge,” Procedia Computer Science, vol. 125, pp. 542–549, 2018. The 6th International Conference on Smart Computing and Communications.
  24. G. P. Koudouridis, S. Shalmashi, and R. Moosavi, “An Evaluation Survey of Knowledge-Based Approaches in Telecommunication Applications,” Telecom, vol. 5, pp. 98–121, Mar. 2024. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
  25. C. Cellucci, “The scope of logic: Deduction, abduction, analogy,” Theoria, vol. 64, no. 2-3, pp. 217–242, 1998.
  26. K. Cobbe, V. Kosaraju, and M. B. et al., “Training verifiers to solve math word problems,” CoRR, vol. abs/2110.14168, 2021.
  27. A. Patel, S. Bhattamishra, and N. Goyal, “Are NLP models really able to solve simple math word problems?,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Online), pp. 2080–2094, Association for Computational Linguistics, June 2021.
  28. R. Koncel-Kedziorski, S. Roy, A. Aimini, N. Kushman, and H. Hajishirzi, “MAWPS: A Math Word Problem Repository,” in NAACL-HLT, 2016.
  29. A. Amini, S. Gabriel, S. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi, “Mathqa: Towards interpretable math word problem solving with operation-based formalisms,” CoRR, vol. abs/1905.13319, 2019.
  30. T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong, “Solving olympiad geometry without human demonstrations,” Nature, vol. 625, pp. 476–482, Jan 2024.
  31. D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt, “Measuring mathematical problem solving with the math dataset,” NeurIPS, 2021.
  32. A. Talmor, J. Herzig, N. Lourie, and J. Berant, “CommonsenseQA: A question answering challenge targeting commonsense knowledge,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Association for Computational Linguistics, June 2019.
  33. M. Geva, D. Khashabi, E. Segal, and et al., “Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 346–361, 04 2021.
  34. M. Ahn, A. Brohan, and N. B. et al., “Do as i can and not as i say: Grounding language in robotic affordances,” in arXiv preprint arXiv:2204.01691, 2022.
  35. J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick, “Clevr: A diagnostic dataset for compositional language and elementary visual reasoning,” 2016.
  36. K. Yi, C. Gan, Y. Li, P. Kohli, J. Wu, A. Torralba, and J. B. Tenenbaum, “Clevrer: Collision events for video representation and reasoning,” 2020.
  37. J. Wei, X. Wang, D. Schuurmans, and et al., “Chain-of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information Processing Systems (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), vol. 35, pp. 24824–24837, Curran Associates, Inc., 2022.
  38. J. Wang, Q. Sun, N. Chen, X. Li, and M. Gao, “Boosting language models reasoning with chain-of-knowledge prompting,” 2023.
  39. H. Liu, J. Liu, L. Cui, Z. Teng, N. Duan, M. Zhou, and Y. Zhang, “Logiqa 2.0—an improved dataset for logical reasoning in natural language understanding,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2947–2962, 2023.
  40. S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for learning natural language inference,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, 2015.
  41. A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus for sentence understanding through inference,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122, Association for Computational Linguistics, 2018.
  42. X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” 2023.
  43. S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree of Thoughts: Deliberate Problem Solving with Large Language Models,” Dec. 2023. arXiv:2305.10601 [cs].
  44. M. Besta, N. Blach, and A. K. et al., “Graph of thoughts: Solving elaborate problems with large language models,” 2024.
  45. J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. L. Bras, Y. Choi, and H. Hajishirzi, “Generated knowledge prompting for commonsense reasoning,” CoRR, vol. abs/2110.08387, 2021.
  46. S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning and acting in language models,” 2023.
  47. N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: language agents with verbal reinforcement learning,” in Advances in Neural Information Processing Systems (A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, eds.), vol. 36, pp. 8634–8652, Curran Associates, Inc., 2023.
  48. L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig, “Pal: Program-aided language models,” 2023.
  49. H. Zhou, A. Nova, H. Larochelle, A. Courville, B. Neyshabur, and H. Sedghi, “Teaching algorithmic reasoning via in-context learning,” 2022.
  50. Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot, “Complexity-based prompting for multi-step reasoning,” 2023.
  51. D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. Le, and E. Chi, “Least-to-most prompting enables complex reasoning in large language models,” 2023.
  52. A. Creswell, M. Shanahan, and I. Higgins, “Selection-inference: Exploiting large language models for interpretable logical reasoning,” 2022.
  53. J. Yu, R. He, and R. Ying, “Thought propagation: An analogical approach to complex reasoning with large language models,” 2023.
  54. Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch, “Improving factuality and reasoning in language models through multiagent debate,” arXiv preprint arXiv:2305.14325, 2023.
  55. Y. Zhang, S. Mao, T. Ge, X. Wang, Y. Xia, M. Lan, and F. Wei, “K-level reasoning with large language models,” 2024.
  56. B. Alkhamissi, S. Verma, P. Yu, Z. Jin, A. Celikyilmaz, and M. Diab, “Opt-r: Exploring the role of explanations in finetuning and prompting for reasoning skills of large language models,” in Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE), Association for Computational Linguistics, 2023.
  57. N. Ho, L. Schmid, and S.-Y. Yun, “Large language models are reasoning teachers,” in Annual Meeting of the Association for Computational Linguistics, 2022.
  58. T. Q. Luong, X. Zhang, Z. Jie, P. Sun, X. Jin, and H. Li, “Reft: Reasoning with reinforced fine-tuning,” 2024.
  59. L. Pan, A. Albalak, X. Wang, and W. Y. Wang, “Logic-lm: Empowering large language models with symbolic solvers for faithful logical reasoning,” 2023.
  60. S. Yang, X. Li, L. Cui, L. Bing, and W. Lam, “Neuro-symbolic integration brings causal and reliable reasoning proofs,” 2023.
  61. M. Fang, S. Deng, Y. Zhang, Z. Shi, L. Chen, M. Pechenizkiy, and J. Wang, “Large language models are neurosymbolic reasoners,” 2024.
  62. T. Zia and D. Windridge, “A generative adversarial network for single and multi-hop distributional knowledge base completion,” Neurocomputing, vol. 461, pp. 543–551, 2021.
  63. X. Shen, Z. Song, and Z. Zhang, “Afbt gan: enhanced explainability and diagnostic performance for cognitive decline by counterfactual generative adversarial network,” 2024.
  64. E. Misino, G. Marra, and E. Sansone, “Vael: Bridging variational autoencoders and probabilistic logic programming,” 2022.
  65. K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep conditional generative models,” in Advances in Neural Information Processing Systems (C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28, Curran Associates, Inc., 2015.
  66. L. Wang, J. Li, R. Yan, and D. Zhao, “Plan-CVAE: A planning-based conditional variational autoencoder for story generation,” in Proceedings of the 19th Chinese National Conference on Computational Linguistics, (Haikou, China), pp. 892–902, Chinese Information Processing Society of China, Oct. 2020.
  67. Z. Xu, H. Wang, D. Bespalov, P. Stone, and Y. Qi, “Latent skill discovery for chain-of-thought reasoning,” 2023.
  68. J. Ye, S. Gong, L. Chen, L. Zheng, J. Gao, H. Shi, C. Wu, Z. Li, W. Bi, and L. Kong, “Diffusion of thoughts: Chain-of-thought reasoning in diffusion language models,” 2024.
  69. W. Kehl and H. Hopfmuller, “Model-based reasoning for the management of telecommunication networks,” in Proceedings of ICC ’93 - IEEE International Conference on Communications, vol. 1, pp. 13–17 vol.1, 1993.
  70. A. De Paola, S. Fiduccia, S. Gaglio, L. Gatani, G. Lo Re, A. Pizzitola, M. Ortolani, P. Storniolo, and A. Urso, “Rule based reasoning for network management,” in Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05), pp. 25–30, 2005.
  71. S. S. Mwanje and C. Mannweiler, “Towards cognitive autonomous networks in 5g,” in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), pp. 1–8, 2018.
  72. J. Zhang, C. Yang, R. Dong, Y. Wang, A. Anpalagan, Q. Ni, and M. Guizani, “Intent-driven closed-loop control and management framework for 6g open ran,” IEEE Internet of Things Journal, vol. 11, no. 4, pp. 6314–6327, 2024.
  73. International Telecommunication Union Telecommunication Standardization Sector (ITU-T), “ITU-T recommendation m.3010: Principles for a telecommunications management network,” ITU-T Recommendation M.3010, International Telecommunication Union Telecommunication Standardization Sector (ITU-T), 2000.
  74. N. H. Kumar and S. Baskaran, “Machine learning: The panacea for 5g complexities,” Journal of ICT Standardization, vol. 7, no. 2, pp. 157–170, 2019.
  75. E. O. Eboigbe, O. A. Farayola, F. O. Olatoye, O. C. Nnabugwu, and C. Daraojimba, “Business intelligence transformation through ai and analytics,” Engineering Science & Technology Journal, vol. 4, pp. 285–307, Nov. 2023.
  76. M.-A. Aufaure, “What’s up in business intelligence? a contextual and knowledge-based perspective,” in Conceptual Modeling (W. Ng, V. C. Storey, and J. C. Trujillo, eds.), (Berlin, Heidelberg), pp. 9–18, Springer Berlin Heidelberg, 2013.
  77. T. Hu, Z. Li, X. Jin, L. Qu, and X. Zhang, “Tmid: A comprehensive real-world dataset for trademark infringement detection in e-commerce,” 2023.
  78. P. Martinez-Julia, V. P. Kafie, and H. Asaeda, “Explained intelligent management decisions in virtual networks and network slices,” in 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 221–227, 2020.
  79. X.-T. Dang and F. Sivrikaya, “A lightweight policy-aware broker for multi-domain network slice composition,” in 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 123–130, 2020.
  80. P. Tang, Y. Dong, Y. Chen, S. Mao, and S. Halgamuge, “Qoe-aware traffic aggregation using preference logic for edge intelligence,” IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 6093–6106, 2021.
  81. P. Muñoz, D. Laselva, R. Barco, and P. Mogensen, “Dynamic traffic steering based on fuzzy q-learning approach in a multi-rat multi-layer wireless network,” Computer Networks, vol. 71, pp. 100–116, 2014.
  82. 3GPP, “5G System; Network Exposure Function Northbound APIs; Stage 3,” Technical Specification (TS) 29.522, 3rd Generation Partnership Project (3GPP), 05 2024. Version 18.5.0.
  83. J. P. Jeong, Y. Ahn, Y. Kim, and P. Jung-Soo, “Intent-Based Network Management Automation in 5G Networks,” Internet-Draft draft-jeong-nmrg-ibn-network-management-automation-03, Internet Engineering Task Force, Nov. 2023. Work in Progress.
  84. E. Zeydan and Y. Turk, “Recent advances in intent-based networking: A survey,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–5, 2020.
  85. J. Ali-Tolppa, S. Kocsis, B. Schultz, L. Bodrog, and M. Kajo, “Self-healing and resilience in future 5g cognitive autonomous networks,” in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), pp. 1–8, 2018.
  86. A. Wong, P. Ray, N. Parameswaran, and J. Strassner, “Ontology mapping for the interoperability problem in network management,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 10, pp. 2058–2068, 2005.
  87. K. Apajalahti, J. Niiranen, S. Kapoor, and V. Räisänen, “Sharing performance measurement events across domains,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 463–469, 2017.
  88. S. Wang, M. A. Qureshi, L. Miralles-Pechuán, T. Huynh-The, T. R. Gadekallu, and M. Liyanage, “Applications of explainable ai for 6g: Technical aspects, use cases, and research challenges,” 2023.
  89. F.-h. Tseng, L.-d. Chou, H.-c. Chao, and J. Wang, “Ultra-dense small cell planning using cognitive radio network toward 5g,” IEEE Wireless Communications, vol. 22, no. 6, pp. 76–83, 2015.
  90. N. Gritli, F. Khendek, and M. Toeroe, “Decomposition and propagation of intents for network slice design,” in 2021 IEEE 4th 5G World Forum (5GWF), pp. 165–170, 2021.
  91. X. Zheng, A. Leivadeas, and M. Falkner, “Intent Based Networking management with conflict detection and policy resolution in an enterprise network,” Computer Networks, vol. 219, p. 109457, Dec. 2022.
  92. A. C. Baktir, A. D. N. Junior, A. Zahemszky, A. Likhyani, D. A. Temesgene, D. Roeland, E. D. Biyar, R. F. Ustok, M. Orlić, and M. D’Angelo, “Intent-based cognitive closed-loop management with built-in conflict handling,” in 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), pp. 73–78, June 2022. ISSN: 2693-9789.
  93. Y. Sun, Z. Tian, M. Li, C. Zhu, and N. Guizani, “Automated attack and defense framework toward 5g security,” IEEE Network, vol. 34, no. 5, pp. 247–253, 2020.
  94. A. Leivadeas and M. Falkner, “A survey on intent-based networking,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 625–655, 2023.
  95. 3GPP, “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Management and orchestration; Intent driven management services for mobile networks,” Technical Specification (TS) 28.312, 3rd Generation Partnership Project (3GPP), 12 2017. Version 18.2.1.
  96. T. Forum, “Intent in Autonomous Networks,” Technical Report (TR) IG1253, 3rd Generation Partnership Project (3GPP), 09 2022. 1.3.0.
  97. S. K. Perepu, J. P. Martins, R. S. S, and K. Dey, “Intent-based multi-agent reinforcement learning for service assurance in cellular networks,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pp. 2879–2884, 2022.
  98. A. Ajay, Y. Du, A. Gupta, J. B. Tenenbaum, T. S. Jaakkola, and P. Agrawal, “Is conditional generative modeling all you need for decision making?,” in The Eleventh International Conference on Learning Representations (ICLR), 2023.
  99. S. Kambhampati, “Can large language models reason and plan?,” Annals of the New York Academy of Sciences, Mar. 2024.
  100. Y. LeCun, “A path towards autonomous machine intelligence,” 2022.
  101. S. Kambhampati, K. Valmeekam, and L. G. et al., “Llms can’t plan, but can help planning in llm-modulo frameworks,” 2024.
  102. K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati, “On the Planning Abilities of Large Language Models : A Critical Investigation,” Nov. 2023. arXiv:2305.15771 [cs].
  103. T. Silver, S. Dan, K. Srinivas, J. Tenenbaum, L. Kaelbling, and M. Katz, “Generalized planning in PDDL domains with pretrained large language models,” in AAAI Conference on Artificial Intelligence (AAAI), 2024.
  104. S. Kambhampati, K. Valmeekam, M. Marquez, and L. Guan, “On the role of large language models in planning,” July 2023. Tutorial presented at the International Conference on Automated Planning and Scheduling (ICAPS), Prague.
  105. K. Hammond and D. Leake, “Large language models need symbolic ai,” CEUR Workshop Proceedings, vol. 3432, pp. 204–209, 2023. 17th International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2023.
  106. Z. Zhou, B. Hu, C. Zhao, P. Zhang, and B. Liu, “Large Language Model as a Policy Teacher for Training Reinforcement Learning Agents,” Jan. 2024. arXiv:2311.13373 [cs].
  107. G. Franceschelli and M. Musolesi, “Reinforcement learning for generative ai: State of the art, opportunities and open research challenges,” J. Artif. Int. Res., vol. 79, feb 2024.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Athanasios Karapantelakis (5 papers)
  2. Alexandros Nikou (28 papers)
  3. Ajay Kattepur (2 papers)
  4. Jean Martins (2 papers)
  5. Leonid Mokrushin (2 papers)
  6. Swarup Kumar Mohalik (7 papers)
  7. Marin Orlic (3 papers)
  8. Aneta Vulgarakis Feljan (8 papers)

Summary

We haven't generated a summary for this paper yet.