Disentangling transitions in topological order induced by boundary decoherence (2404.06514v2)
Abstract: We study the entanglement structure of topological orders subject to decoherence on the bipartition boundary. Focusing on the toric codes in $d$ space dimensions for $d=2,3,4$, we explore whether the boundary decoherence may be able to induce a disentangling transition, characterized by the destruction of mixed-state long-range entanglement across the bipartition, measured by topological entanglement negativity. A key insight of our approach is the connection between the negativity spectrum of the decohered mixed states and emergent symmetry-protected topological orders under certain symmetry-preserving perturbation localized on the bipartition boundary. This insight allows us to analytically derive the exact results of entanglement negativity without using a replica trick.
- X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, OUP Oxford (2004).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
- C. de Groot, A. Turzillo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022).
- R. Ma and C. Wang, Average symmetry-protected topological phases, Phys. Rev. X 13, 031016 (2023).
- J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence, arXiv preprint arXiv:2210.16323 (2022).
- J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality under decoherence or weak measurement, PRX Quantum 4, 030317 (2023).
- Y. Zou, S. Sang, and T. H. Hsieh, Channeling quantum criticality, Phys. Rev. Lett. 130, 250403 (2023).
- Y.-H. Chen and T. Grover, Separability transitions in topological states induced by local decoherence, arXiv preprint arXiv:2309.11879 (2023a).
- Y.-H. Chen and T. Grover, Symmetry-enforced many-body separability transitions, arXiv preprint arXiv:2310.07286 (2023b).
- S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state quantum phases: Renormalization and quantum error correction, arXiv preprint arXiv:2310.08639 (2023).
- Z. Wang, Z. Wu, and Z. Wang, Intrinsic mixed-state topological order without quantum memory, arXiv preprint arXiv:2307.13758 (2023).
- P.-S. Hsin, Z.-X. Luo, and H.-Y. Sun, Anomalies of average symmetries: Entanglement and open quantum systems, arXiv preprint arXiv:2312.09074 (2023).
- K. Su, N. Myerson-Jain, and C. Xu, Conformal field theories generated by chern insulators under decoherence or measurement, Phys. Rev. B 109, 035146 (2024a).
- N. Myerson-Jain, T. L. Hughes, and C. Xu, Decoherence through ancilla anyon reservoirs, arXiv preprint arXiv:2312.04638 (2023).
- Z. Li and R. S. Mong, Replica topological order in quantum mixed states and quantum error correction, arXiv preprint arXiv:2402.09516 (2024).
- K. Su, Z. Yang, and C.-M. Jian, Tapestry of dualities in decohered quantum error correction codes, arXiv preprint arXiv:2401.17359 (2024b).
- A. Lyons, Understanding stabilizer codes under local decoherence through a general statistical mechanics mapping, arXiv preprint arXiv:2403.03955 (2024).
- J. Y. Lee, Exact calculations of coherent information for toric codes under decoherence: Identifying the fundamental error threshold, arXiv preprint arXiv:2402.16937 (2024).
- Y.-H. Chen and T. Grover, Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors, arXiv preprint arXiv:2403.06553 (2024).
- R. Ma and A. Turzillo, Symmetry protected topological phases of mixed states in the doubled space, arXiv preprint arXiv:2403.13280 (2024).
- H. Xue, J. Y. Lee, and Y. Bao, Tensor network formulation of symmetry protected topological phases in mixed states, arXiv preprint arXiv:2403.17069 (2024).
- R. Sohal and A. Prem, A noisy approach to intrinsically mixed-state topological order, arXiv preprint arXiv:2403.13879 (2024).
- Z. Wang and L. Li, Anomaly in open quantum systems and its implications on mixed-state quantum phases, arXiv preprint arXiv:2403.14533 (2024).
- A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996).
- M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1 (1996).
- J. Eisert and M. B. Plenio, A comparison of entanglement measures, Journal of Modern Optics 46, 145 (1999).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
- T.-C. Lu and S. Vijay, Characterizing long-range entanglement in a mixed state through an emergent order on the entangling surface, Phys. Rev. Res. 5, 033031 (2023).
- X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011a).
- X. Chen, Z.-C. Gu, and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev. B 84, 235128 (2011b).
- H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86, 910 (2001).
- T.-C. Lu and T. Grover, Structure of quantum entanglement at a finite temperature critical point, Phys. Rev. Research 2, 043345 (2020).
- T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological order at finite temperature using entanglement negativity, Phys. Rev. Lett. 125, 116801 (2020).
- A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
- F. Pollmann and A. M. Turner, Detection of symmetry-protected topological phases in one dimension, Phys. Rev. B 86, 125441 (2012).
- L. Onsager, Crystal statistics. i. a two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).
- R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states, Phys. Rev. A 71, 062313 (2005).
- F. J. Wegner, Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters, Journal of Mathematical Physics 12, 2259 (1971).
- J. B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51, 659 (1979).
- J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A 83, 042330 (2011).
- T. H. Hsieh, From d-dimensional quantum to d+ 1-dimensional classical systems, Student Review (2016).