Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling transitions in topological order induced by boundary decoherence (2404.06514v2)

Published 9 Apr 2024 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: We study the entanglement structure of topological orders subject to decoherence on the bipartition boundary. Focusing on the toric codes in $d$ space dimensions for $d=2,3,4$, we explore whether the boundary decoherence may be able to induce a disentangling transition, characterized by the destruction of mixed-state long-range entanglement across the bipartition, measured by topological entanglement negativity. A key insight of our approach is the connection between the negativity spectrum of the decohered mixed states and emergent symmetry-protected topological orders under certain symmetry-preserving perturbation localized on the bipartition boundary. This insight allows us to analytically derive the exact results of entanglement negativity without using a replica trick.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons, OUP Oxford  (2004).
  2. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  3. C. de Groot, A. Turzillo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022).
  4. R. Ma and C. Wang, Average symmetry-protected topological phases, Phys. Rev. X 13, 031016 (2023).
  5. J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence, arXiv preprint arXiv:2210.16323  (2022).
  6. J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality under decoherence or weak measurement, PRX Quantum 4, 030317 (2023).
  7. Y. Zou, S. Sang, and T. H. Hsieh, Channeling quantum criticality, Phys. Rev. Lett. 130, 250403 (2023).
  8. Y.-H. Chen and T. Grover, Separability transitions in topological states induced by local decoherence, arXiv preprint arXiv:2309.11879  (2023a).
  9. Y.-H. Chen and T. Grover, Symmetry-enforced many-body separability transitions, arXiv preprint arXiv:2310.07286  (2023b).
  10. S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state quantum phases: Renormalization and quantum error correction, arXiv preprint arXiv:2310.08639  (2023).
  11. Z. Wang, Z. Wu, and Z. Wang, Intrinsic mixed-state topological order without quantum memory, arXiv preprint arXiv:2307.13758  (2023).
  12. P.-S. Hsin, Z.-X. Luo, and H.-Y. Sun, Anomalies of average symmetries: Entanglement and open quantum systems, arXiv preprint arXiv:2312.09074  (2023).
  13. K. Su, N. Myerson-Jain, and C. Xu, Conformal field theories generated by chern insulators under decoherence or measurement, Phys. Rev. B 109, 035146 (2024a).
  14. N. Myerson-Jain, T. L. Hughes, and C. Xu, Decoherence through ancilla anyon reservoirs, arXiv preprint arXiv:2312.04638  (2023).
  15. Z. Li and R. S. Mong, Replica topological order in quantum mixed states and quantum error correction, arXiv preprint arXiv:2402.09516  (2024).
  16. K. Su, Z. Yang, and C.-M. Jian, Tapestry of dualities in decohered quantum error correction codes, arXiv preprint arXiv:2401.17359  (2024b).
  17. A. Lyons, Understanding stabilizer codes under local decoherence through a general statistical mechanics mapping, arXiv preprint arXiv:2403.03955  (2024).
  18. J. Y. Lee, Exact calculations of coherent information for toric codes under decoherence: Identifying the fundamental error threshold, arXiv preprint arXiv:2402.16937  (2024).
  19. Y.-H. Chen and T. Grover, Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors, arXiv preprint arXiv:2403.06553  (2024).
  20. R. Ma and A. Turzillo, Symmetry protected topological phases of mixed states in the doubled space, arXiv preprint arXiv:2403.13280  (2024).
  21. H. Xue, J. Y. Lee, and Y. Bao, Tensor network formulation of symmetry protected topological phases in mixed states, arXiv preprint arXiv:2403.17069  (2024).
  22. R. Sohal and A. Prem, A noisy approach to intrinsically mixed-state topological order, arXiv preprint arXiv:2403.13879  (2024).
  23. Z. Wang and L. Li, Anomaly in open quantum systems and its implications on mixed-state quantum phases, arXiv preprint arXiv:2403.14533  (2024).
  24. A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996).
  25. M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1 (1996).
  26. J. Eisert and M. B. Plenio, A comparison of entanglement measures, Journal of Modern Optics 46, 145 (1999).
  27. G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  28. T.-C. Lu and S. Vijay, Characterizing long-range entanglement in a mixed state through an emergent order on the entangling surface, Phys. Rev. Res. 5, 033031 (2023).
  29. X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011a).
  30. X. Chen, Z.-C. Gu, and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev. B 84, 235128 (2011b).
  31. H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86, 910 (2001).
  32. T.-C. Lu and T. Grover, Structure of quantum entanglement at a finite temperature critical point, Phys. Rev. Research 2, 043345 (2020).
  33. T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological order at finite temperature using entanglement negativity, Phys. Rev. Lett. 125, 116801 (2020).
  34. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
  35. F. Pollmann and A. M. Turner, Detection of symmetry-protected topological phases in one dimension, Phys. Rev. B 86, 125441 (2012).
  36. L. Onsager, Crystal statistics. i. a two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).
  37. R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states, Phys. Rev. A 71, 062313 (2005).
  38. F. J. Wegner, Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters, Journal of Mathematical Physics 12, 2259 (1971).
  39. J. B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51, 659 (1979).
  40. J. Haah, Local stabilizer codes in three dimensions without string logical operators, Phys. Rev. A 83, 042330 (2011).
  41. T. H. Hsieh, From d-dimensional quantum to d+ 1-dimensional classical systems, Student Review  (2016).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com