Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Propagation of Chaos for the Ensemble Langevin Sampler (2404.06456v2)

Published 9 Apr 2024 in math.PR

Abstract: The aim of this note is to revisit propagation of chaos for a Langevin-type interacting particle system used for sampling probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler, for which propagation of chaos was first proved by Ding and Li. Like these authors, we prove propagation of chaos using a synchronous coupling as a starting point, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. This approach originates from numerical analysis and was recently employed to prove mean field limits for consensus-based optimization and related interacting particle systems. In the context of ensemble Langevin sampling, it enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive epsilon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. “An inequality for Hilbert-Schmidt norm” In Comm. Math. Phys. 81.1, 1981, pp. 89–96 URL: http://projecteuclid.org/euclid.cmp/1103920160
  2. Rajendra Bhatia “Matrix analysis” 169, Graduate Texts in Mathematics Springer-Verlag, New York, 1997 DOI: 10.1007/978-1-4612-0653-8
  3. Rajendra Bhatia “Matrix factorizations and their perturbations” Second Conference of the International Linear Algebra Society (Lisbon, 1992) In Linear Algebra Appl. 197/198, 1994, pp. 245–276 DOI: 10.1016/0024-3795(94)90490-1
  4. “An analytical framework for consensus-based global optimization method” In Math. Models Methods Appl. Sci. 28.6, 2018, pp. 1037–1066 DOI: 10.1142/S0218202518500276
  5. “Wasserstein stability estimates for covariance-preconditioned Fokker-Planck equations” In Nonlinearity 34.4, 2021, pp. 2275–2295 DOI: 10.1088/1361-6544/abbe62
  6. “Propagation of chaos: a review of models, methods and applications. I. Models and methods” In Kinet. Relat. Models 15.6, 2022, pp. 895–1015 DOI: 10.3934/krm.2022017
  7. “Propagation of chaos: a review of models, methods and applications. II. Applications” In Kinet. Relat. Models 15.6, 2022, pp. 1017–1173 DOI: 10.3934/krm.2022018
  8. “Ensemble Kalman inversion: mean-field limit and convergence analysis” In Stat. Comput. 31.1, 2021, pp. Paper No. 9\bibrangessep21 DOI: 10.1007/s11222-020-09976-0
  9. “Ensemble Kalman sampler: mean-field limit and convergence analysis” In SIAM J. Math. Anal. 53.2, 2021, pp. 1546–1578 DOI: 10.1137/20M1339507
  10. “Ensemble inference methods for models with noisy and expensive likelihoods” In SIAM J. Appl. Dyn. Syst. 21.2, 2022, pp. 1539–1572 DOI: 10.1137/21M1410853
  11. Stewart N. Ethier and Thomas G. Kurtz “Markov processes” Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics John Wiley & Sons, Inc., New York, 1986 DOI: 10.1002/9780470316658
  12. “On the rate of convergence in Wasserstein distance of the empirical measure” In Probab. Theory Related Fields 162.3-4, 2015, pp. 707–738 DOI: 10.1007/s00440-014-0583-7
  13. “Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler” In SIAM J. Appl. Dyn. Syst. 19.1, 2020, pp. 412–441 DOI: 10.1137/19M1251655
  14. Alfredo Garbuno-Inigo, Nikolas Nüsken and Sebastian Reich “Affine invariant interacting Langevin dynamics for Bayesian inference” In SIAM J. Appl. Dyn. Syst. 19.3, 2020, pp. 1633–1658 DOI: 10.1137/19M1304891
  15. Nicolai Jurek Gerber, Franca Hoffmann and Urbain Vaes “Mean-field limits for Consensus-Based Optimization and Sampling”, 2023
  16. David Gilbarg and Neil S. Trudinger “Elliptic Partial Differential Equations of Second Order” Reprint of the 1998 edition, Classics in Mathematics Springer-Verlag, Berlin, 2001
  17. Desmond J. Higham, Xuerong Mao and Andrew M. Stuart “Strong convergence of Euler-type methods for nonlinear stochastic differential equations” In SIAM J. Numer. Anal. 40.3, 2002, pp. 1041–1063 DOI: 10.1137/S0036142901389530
  18. Dante Kalise, Akash Sharma and Michael V. Tretyakov “Consensus-based optimization via jump-diffusion stochastic differential equations” In Math. Models Methods Appl. Sci. 33.2, 2023, pp. 289–339 DOI: 10.1142/S0218202523500082
  19. Rafail Khasminskii “Stochastic Stability of Differential Equations” With contributions by G. N. Milstein and M. B. Nevelson 66, Stochastic Modelling and Applied Probability Springer, Heidelberg, 2012 DOI: 10.1007/978-3-642-23280-0
  20. Fuad Kittaneh “On Lipschitz functions of normal operators” In Proc. Amer. Math. Soc. 94.3, 1985, pp. 416–418 DOI: 10.2307/2045225
  21. Sean P. Meyn and R.L. Tweedie “Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes” In Adv. in Appl. Probab. 25.3, 1993, pp. 518–548 DOI: 10.2307/1427522
  22. “Probability and computing” Randomization and probabilistic techniques in algorithms and data analysis Cambridge University Press, Cambridge, 2017, pp. xx+467
  23. “Note on interacting Langevin diffusions: gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart”, 2019
  24. A.M. Stuart “Inverse problems: a Bayesian perspective” In Acta Numer. 19, 2010, pp. 451–559 DOI: 10.1017/S0962492910000061
  25. Alain-Sol Sznitman “Topics in propagation of chaos” In École d’Été de Probabilités de Saint-Flour XIX—1989 1464, Lecture Notes in Math. Springer, Berlin, 1991, pp. 165–251 DOI: 10.1007/BFb0085169
  26. “An inequality for trace ideals” In Comm. Math. Phys. 76.2, 1980, pp. 143–148 URL: http://projecteuclid.org/euclid.cmp/1103908255
  27. Cédric Villani “Optimal Transport” 338, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Springer-Verlag, Berlin, 2009 DOI: 10.1007/978-3-540-71050-9
  28. Cédric Villani “Topics in Optimal Transportation” 58, Graduate Studies in Mathematics American Mathematical Society, Providence, RI, 2003 DOI: 10.1090/gsm/058
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets