Minimal solution to the axion isocurvature problem from a nonminimal coupling (2404.06441v3)
Abstract: The main limitation for preinflationary breaking of Peccei-Quinn (PQ) symmetry is the upper bound on the Hubble rate during inflation from axion isocurvature fluctuations. This leads to a tension between high scale inflation and QCD axions with grand unified theory (GUT) scale decay constants, which reduces the potential for a detection of tensor modes at next generation cosmic microwave background (CMB) experiments. We propose a mechanism that explicitly breaks PQ symmetry via nonminimal coupling to gravity, that lifts the axion mass above the Hubble scale during inflation and has negligible impact on today's axion potential. The initially heavy axion gets trapped at an intermediate minimum during inflation given by the phase of the nonminimal coupling, before it moves to its true $CP$-conserving minimum after inflation. During this stage it undergoes coherent oscillations around an adiabatically decreasing minimum, which slightly dilutes the axion energy density, while still being able to explain the observed dark matter relic abundance. This scenario can be tested by the combination of next generation CMB surveys like CMB-S4 and LiteBIRD with haloscopes such as ABRACADABRA, DMRadio or CASPEr-Electric.
- R. D. Peccei and H. R. Quinn, “CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles,” Phys. Rev. Lett. 38 (Jun, 1977) 1440–1443. https://link.aps.org/doi/10.1103/PhysRevLett.38.1440.
- R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D 16 (1977) 1791–1797.
- S. Weinberg, “A new light boson?,” Phys. Rev. Lett. 40 (Jan, 1978) 223–226. https://link.aps.org/doi/10.1103/PhysRevLett.40.223.
- F. Wilczek, “Problem of strong p𝑝pitalic_p and t𝑡titalic_t invariance in the presence of instantons,” Phys. Rev. Lett. 40 (Jan, 1978) 279–282. https://link.aps.org/doi/10.1103/PhysRevLett.40.279.
- L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, “The landscape of QCD axion models,” Phys. Rept. 870 (2020) 1–117, arXiv:2003.01100 [hep-ph].
- C. A. J. O’Hare, “Cosmology of axion dark matter,” arXiv:2403.17697 [hep-ph].
- L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
- M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
- J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
- M. Redi and A. Tesi, “Meso-inflationary QCD axion,” Phys. Rev. D 107 no. 9, (2023) 095032, arXiv:2211.06421 [hep-ph].
- M. Gorghetto, E. Hardy, H. Nicolaescu, A. Notari, and M. Redi, “Early vs late string networks from a minimal QCD Axion,” JHEP 02 (2024) 223, arXiv:2311.09315 [hep-ph].
- G. W. Gibbons and S. W. Hawking, “Cosmological event horizons, thermodynamics, and particle creation,” Phys. Rev. D 15 (May, 1977) 2738–2751. https://link.aps.org/doi/10.1103/PhysRevD.15.2738.
- G. F. Giudice, E. W. Kolb, and A. Riotto, “Largest temperature of the radiation era and its cosmological implications,” Phys. Rev. D 64 (2001) 023508, arXiv:hep-ph/0005123.
- E. W. Kolb, A. Notari, and A. Riotto, “On the reheating stage after inflation,” Phys. Rev. D 68 (2003) 123505, arXiv:hep-ph/0307241.
- R. T. Co, E. Gonzalez, and K. Harigaya, “Increasing Temperature toward the Completion of Reheating,” JCAP 11 (2020) 038, arXiv:2007.04328 [astro-ph.CO].
- Planck Collaboration, Y. Akrami et al., “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys. 641 (2020) A10, arXiv:1807.06211 [astro-ph.CO].
- J. Hamann, S. Hannestad, G. G. Raffelt, and Y. Y. Y. Wong, “Isocurvature forecast in the anthropic axion window,” JCAP 06 (2009) 022, arXiv:0904.0647 [hep-ph].
- M. S. Turner, “Cosmic and Local Mass Density of Invisible Axions,” Phys. Rev. D 33 (1986) 889–896.
- D. H. Lyth, “Axions and inflation: Sitting in the vacuum,” Phys. Rev. D 45 (1992) 3394–3404.
- L. Visinelli and P. Gondolo, “Dark Matter Axions Revisited,” Phys. Rev. D 80 (2009) 035024, arXiv:0903.4377 [astro-ph.CO].
- T. Kobayashi, R. Kurematsu, and F. Takahashi, “Isocurvature Constraints and Anharmonic Effects on QCD Axion Dark Matter,” JCAP 09 (2013) 032, arXiv:1304.0922 [hep-ph].
- G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro, “The QCD axion, precisely,” JHEP 01 (2016) 034, arXiv:1511.02867 [hep-ph].
- M. B. Wise, H. Georgi, and S. L. Glashow, “SU(5) and the Invisible Axion,” Phys. Rev. Lett. 47 (1981) 402.
- G. Lazarides, “SO(10) and the Invisible Axion,” Phys. Rev. D 25 (1982) 2425.
- K. Choi and J. E. Kim, “Harmful Axions in Superstring Models,” Phys. Lett. B 154 (1985) 393. [Erratum: Phys.Lett.B 156, 452 (1985)].
- P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206.
- A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, “String Axiverse,” Phys. Rev. D 81 (2010) 123530, arXiv:0905.4720 [hep-th].
- Y. Kahn, B. R. Safdi, and J. Thaler, “Broadband and Resonant Approaches to Axion Dark Matter Detection,” Phys. Rev. Lett. 117 no. 14, (2016) 141801, arXiv:1602.01086 [hep-ph].
- P. W. Graham and S. Rajendran, “New Observables for Direct Detection of Axion Dark Matter,” Phys. Rev. D 88 (2013) 035023, arXiv:1306.6088 [hep-ph].
- D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and A. Sushkov, “Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr),” Phys. Rev. X 4 no. 2, (2014) 021030, arXiv:1306.6089 [hep-ph].
- D. F. Jackson Kimball et al., “Overview of the Cosmic Axion Spin Precession Experiment (CASPEr),” Springer Proc. Phys. 245 (2020) 105–121, arXiv:1711.08999 [physics.ins-det].
- CMB-S4 Collaboration, K. N. Abazajian et al., “CMB-S4 Science Book, First Edition,” arXiv:1610.02743 [astro-ph.CO].
- T. Matsumura et al., “Mission design of LiteBIRD,” J. Low Temp. Phys. 176 (2014) 733, arXiv:1311.2847 [astro-ph.IM].
- BICEP, Keck Collaboration, P. A. R. Ade et al., “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127 no. 15, (2021) 151301, arXiv:2110.00483 [astro-ph.CO].
- G. R. Dvali, “Removing the cosmological bound on the axion scale,” arXiv:hep-ph/9505253.
- K. S. Jeong and F. Takahashi, “Suppressing Isocurvature Perturbations of QCD Axion Dark Matter,” Phys. Lett. B 727 (2013) 448–451, arXiv:1304.8131 [hep-ph].
- E. Koutsangelas, “Removing the cosmological bound on the axion scale in the Kim-Shifman-Vainshtein-Zakharov and Dine-Fischler-Srednicki-Zhitnitsky models,” Phys. Rev. D 107 no. 9, (2023) 095009, arXiv:2212.07822 [hep-ph].
- F. Takahashi and M. Yamada, “Strongly broken Peccei-Quinn symmetry in the early Universe,” JCAP 10 (2015) 010, arXiv:1507.06387 [hep-ph].
- Y. Nomura, S. Rajendran, and F. Sanches, “Axion Isocurvature and Magnetic Monopoles,” Phys. Rev. Lett. 116 no. 14, (2016) 141803, arXiv:1511.06347 [hep-ph].
- M. Kawasaki, F. Takahashi, and M. Yamada, “Adiabatic suppression of the axion abundance and isocurvature due to coupling to hidden monopoles,” JHEP 01 (2018) 053, arXiv:1708.06047 [hep-ph].
- E. Witten, “Dyons of Charge e theta/2 pi,” Phys. Lett. B 86 (1979) 283–287.
- S. Folkerts, C. Germani, and J. Redondo, “Axion Dark Matter and Planck favor non-minimal couplings to gravity,” Phys. Lett. B 728 (2014) 532–536, arXiv:1304.7270 [hep-ph].
- A. D. Linde, “Axions in inflationary cosmology,” Phys. Lett. B 259 (1991) 38–47.
- K. Choi, K. S. Jeong, and M.-S. Seo, “String theoretic QCD axions in the light of PLANCK and BICEP2,” JHEP 07 (2014) 092, arXiv:1404.3880 [hep-th].
- E. J. Chun, “Axion Dark Matter with High-Scale Inflation,” Phys. Lett. B 735 (2014) 164–167, arXiv:1404.4284 [hep-ph].
- T. Higaki, K. S. Jeong, and F. Takahashi, “Solving the Tension between High-Scale Inflation and Axion Isocurvature Perturbations,” Phys. Lett. B 734 (2014) 21–26, arXiv:1403.4186 [hep-ph].
- M. Fairbairn, R. Hogan, and D. J. E. Marsh, “Unifying inflation and dark matter with the Peccei-Quinn field: observable axions and observable tensors,” Phys. Rev. D 91 no. 2, (2015) 023509, arXiv:1410.1752 [hep-ph].
- K. Nakayama and M. Takimoto, “Higgs inflation and suppression of axion isocurvature perturbation,” Phys. Lett. B 748 (2015) 108–112, arXiv:1505.02119 [hep-ph].
- K. Harigaya, M. Ibe, M. Kawasaki, and T. T. Yanagida, “Dynamics of Peccei-Quinn Breaking Field after Inflation and Axion Isocurvature Perturbations,” JCAP 11 (2015) 003, arXiv:1507.00119 [hep-ph].
- J. Kearney, N. Orlofsky, and A. Pierce, “High-Scale Axions without Isocurvature from Inflationary Dynamics,” Phys. Rev. D 93 no. 9, (2016) 095026, arXiv:1601.03049 [hep-ph].
- Y. Bao, J. Fan, and L. Li, “Opening up a Window on the Postinflationary QCD Axion,” Phys. Rev. Lett. 130 no. 24, (2023) 241001, arXiv:2209.09908 [hep-ph].
- M. Kawasaki, L. Pearce, L. Yang, and A. Kusenko, “Relaxation leptogenesis, isocurvature perturbations, and the cosmic infrared background,” Phys. Rev. D 95 no. 10, (2017) 103006, arXiv:1701.02175 [hep-ph].
- V. Cardoso, O. J. C. Dias, G. S. Hartnett, M. Middleton, P. Pani, and J. E. Santos, “Constraining the mass of dark photons and axion-like particles through black-hole superradiance,” JCAP 03 (2018) 043, arXiv:1801.01420 [gr-qc].
- T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez, and A. Ringwald, “Probing axions with the neutrino signal from the next galactic supernova,” Phys. Rev. D 94 no. 8, (2016) 085012, arXiv:1605.08780 [astro-ph.HE].
- P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo, and A. Mirizzi, “Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung,” JCAP 10 no. 10, (2019) 016, arXiv:1906.11844 [hep-ph]. [Erratum: JCAP 05, E01 (2020)].
- T. Hashimoto, N. S. Risdianto, and D. Suematsu, “Inflation connected to the origin of CP violation,” Phys. Rev. D 104 no. 7, (2021) 075034, arXiv:2105.06089 [hep-ph].
- G. Barenboim, P. Ko, and W.-i. Park, “The minimal cosmological standard model,” arXiv:2403.05390 [hep-ph].
- G. Barenboim, P. Ko, and W.-i. Park, “Axi-majoron for almost everything,” arXiv:2403.08675 [hep-ph].
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 2, 1984.
- L. E. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 8, 2009.
- G. Ballesteros, J. Redondo, A. Ringwald, and C. Tamarit, “Standard Model—axion—seesaw—Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke,” JCAP 08 (2017) 001, arXiv:1610.01639 [hep-ph].
- S. M. Boucenna and Q. Shafi, “Axion inflation, proton decay, and leptogenesis in SU(5)×U(1)PQ𝑆𝑈5𝑈subscript1𝑃𝑄SU(5)\times U(1)_{PQ}italic_S italic_U ( 5 ) × italic_U ( 1 ) start_POSTSUBSCRIPT italic_P italic_Q end_POSTSUBSCRIPT,” Phys. Rev. D 97 no. 7, (2018) 075012, arXiv:1712.06526 [hep-ph].
- K. Hamaguchi, Y. Kanazawa, and N. Nagata, “Axion quality problem alleviated by nonminimal coupling to gravity,” Phys. Rev. D 105 no. 7, (2022) 076008, arXiv:2108.13245 [hep-th].
- D. Dal Cin and T. Kobayashi, “Ultraviolet sensitivity of Peccei-Quinn inflation,” Phys. Rev. D 108 no. 6, (2023) 063530, arXiv:2305.18524 [hep-ph].
- E. McDonough, A. H. Guth, and D. I. Kaiser, “Nonminimal Couplings and the Forgotten Field of Axion Inflation,” arXiv:2010.04179 [hep-th].
- R. N. Lerner and J. McDonald, “Higgs Inflation and Naturalness,” JCAP 04 (2010) 015, arXiv:0912.5463 [hep-ph].
- M. P. Hertzberg, “On Inflation with Non-minimal Coupling,” JHEP 11 (2010) 023, arXiv:1002.2995 [hep-ph].
- C. P. Burgess, H. M. Lee, and M. Trott, “Comment on Higgs Inflation and Naturalness,” JHEP 07 (2010) 007, arXiv:1002.2730 [hep-ph].
- X. Chen and Y. Wang, “Quasi-Single Field Inflation and Non-Gaussianities,” JCAP 04 (2010) 027, arXiv:0911.3380 [hep-th].
- D. J. H. Chung, E. W. Kolb, A. Riotto, and L. Senatore, “Isocurvature constraints on gravitationally produced superheavy dark matter,” Phys. Rev. D 72 (2005) 023511, arXiv:astro-ph/0411468.
- M. A. G. Garcia, M. Pierre, and S. Verner, “New window into gravitationally produced scalar dark matter,” Phys. Rev. D 108 no. 11, (2023) 115024, arXiv:2305.14446 [hep-ph].
- A. R. Liddle and A. Mazumdar, “Perturbation amplitude in isocurvature inflation scenarios,” Phys. Rev. D 61 (2000) 123507, arXiv:astro-ph/9912349.
- L. Li, T. Nakama, C. M. Sou, Y. Wang, and S. Zhou, “Gravitational Production of Superheavy Dark Matter and Associated Cosmological Signatures,” JHEP 07 (2019) 067, arXiv:1903.08842 [astro-ph.CO].
- C. M. Sou, X. Tong, and Y. Wang, “Chemical-potential-assisted particle production in FRW spacetimes,” JHEP 06 (2021) 129, arXiv:2104.08772 [hep-th].
- A. D. Linde, “Fast roll inflation,” JHEP 11 (2001) 052, arXiv:hep-th/0110195.
- R. T. Co, T. Gherghetta, and K. Harigaya, “Axiogenesis with a heavy QCD axion,” JHEP 10 (2022) 121, arXiv:2206.00678 [hep-ph].
- A. D. Linde and V. F. Mukhanov, “Nongaussian isocurvature perturbations from inflation,” Phys. Rev. D 56 (1997) R535–R539, arXiv:astro-ph/9610219.
- K. Enqvist and M. S. Sloth, “Adiabatic CMB perturbations in pre - big bang string cosmology,” Nucl. Phys. B 626 (2002) 395–409, arXiv:hep-ph/0109214.
- D. H. Lyth and D. Wands, “Generating the curvature perturbation without an inflaton,” Phys. Lett. B 524 (2002) 5–14, arXiv:hep-ph/0110002.
- T. Moroi and T. Takahashi, “Effects of cosmological moduli fields on cosmic microwave background,” Phys. Lett. B 522 (2001) 215–221, arXiv:hep-ph/0110096. [Erratum: Phys.Lett.B 539, 303–303 (2002)].
- I. I. Tkachev, “Phase transitions at preheating,” Phys. Lett. B 376 (1996) 35–40, arXiv:hep-th/9510146.
- L. Kofman, A. D. Linde, and A. A. Starobinsky, “Nonthermal phase transitions after inflation,” Phys. Rev. Lett. 76 (1996) 1011–1014, arXiv:hep-th/9510119.
- S. Kasuya, M. Kawasaki, and T. Yanagida, “Cosmological axion problem in chaotic inflationary universe,” Phys. Lett. B 409 (1997) 94–100, arXiv:hep-ph/9608405.
- S. Kasuya and M. Kawasaki, “Can topological defects be formed during preheating?,” Phys. Rev. D 56 (1997) 7597–7607, arXiv:hep-ph/9703354.
- S. Kasuya and M. Kawasaki, “Topological defects formation after inflation on lattice simulation,” Phys. Rev. D 58 (1998) 083516, arXiv:hep-ph/9804429.
- I. Tkachev, S. Khlebnikov, L. Kofman, and A. D. Linde, “Cosmic strings from preheating,” Phys. Lett. B 440 (1998) 262–268, arXiv:hep-ph/9805209.
- S. Kasuya and M. Kawasaki, “Comments on cosmic string formation during preheating on lattice simulations,” Phys. Rev. D 61 (2000) 083510, arXiv:hep-ph/9903324.
- G. Ballesteros, A. Ringwald, C. Tamarit, and Y. Welling, “Revisiting isocurvature bounds in models unifying the axion with the inflaton,” JCAP 09 (2021) 036, arXiv:2104.13847 [hep-ph].
- H. M. Georgi, L. J. Hall, and M. B. Wise, “Grand Unified Models With an Automatic Peccei-Quinn Symmetry,” Nucl. Phys. B 192 (1981) 409–416.
- M. Dine and N. Seiberg, “String Theory and the Strong CP Problem,” Nucl. Phys. B 273 (1986) 109–124.
- S. R. Coleman and K.-M. Lee, “WORMHOLES MADE WITHOUT MASSLESS MATTER FIELDS,” Nucl. Phys. B 329 (1990) 387–409.
- L. F. Abbott and M. B. Wise, “Wormholes and Global Symmetries,” Nucl. Phys. B 325 (1989) 687–704.
- R. Holman, S. D. H. Hsu, T. W. Kephart, E. W. Kolb, R. Watkins, and L. M. Widrow, “Solutions to the strong CP problem in a world with gravity,” Phys. Lett. B 282 (1992) 132–136, arXiv:hep-ph/9203206.
- M. Kamionkowski and J. March-Russell, “Planck scale physics and the Peccei-Quinn mechanism,” Phys. Lett. B 282 (1992) 137–141, arXiv:hep-th/9202003.
- S. M. Barr and D. Seckel, “Planck scale corrections to axion models,” Phys. Rev. D 46 (1992) 539–549.
- S. Ghigna, M. Lusignoli, and M. Roncadelli, “Instability of the invisible axion,” Phys. Lett. B 283 (1992) 278–281.
- R. Alonso and A. Urbano, “Wormholes and masses for Goldstone bosons,” JHEP 02 (2019) 136, arXiv:1706.07415 [hep-ph].
- R. Kallosh, A. D. Linde, D. A. Linde, and L. Susskind, “Gravity and global symmetries,” Phys. Rev. D 52 (1995) 912–935, arXiv:hep-th/9502069.
- C. Vafa and E. Witten, “Parity Conservation in QCD,” Phys. Rev. Lett. 53 (1984) 535.
- H. Georgi and L. Randall, “Flavor Conserving CP Violation in Invisible Axion Models,” Nucl. Phys. B 276 (1986) 241–252.
- M. Gorghetto and G. Villadoro, “Topological Susceptibility and QCD Axion Mass: QED and NNLO corrections,” JHEP 03 (2019) 033, arXiv:1812.01008 [hep-ph].
- S. Nakagawa, F. Takahashi, and M. Yamada, “Trapping Effect for QCD Axion Dark Matter,” JCAP 05 (2021) 062, arXiv:2012.13592 [hep-ph].
- L. Di Luzio, B. Gavela, P. Quilez, and A. Ringwald, “Dark matter from an even lighter QCD axion: trapped misalignment,” JCAP 10 (2021) 001, arXiv:2102.01082 [hep-ph].
- K. S. Jeong, K. Matsukawa, S. Nakagawa, and F. Takahashi, “Cosmological effects of Peccei-Quinn symmetry breaking on QCD axion dark matter,” JCAP 03 no. 03, (2022) 026, arXiv:2201.00681 [hep-ph].
- M. A. Buen-Abad and J. Fan, “Dynamical axion misalignment with small instantons,” JHEP 12 (2019) 161, arXiv:1911.05737 [hep-ph].
- T. W. B. Kibble, “Topology of cosmic domains and strings,” Journal of Physics A: Mathematical and General 9 no. 8, (Aug, 1976) 1387–1398. https://doi.org/10.1088/0305-4470/9/8/029.
- T. W. B. Kibble, G. Lazarides, and Q. Shafi, “Walls bounded by strings,” Phys. Rev. D 26 (Jul, 1982) 435–439. https://link.aps.org/doi/10.1103/PhysRevD.26.435.
- T. Kibble, “Some implications of a cosmological phase transition,” Physics Reports 67 no. 1, (1980) 183–199. https://www.sciencedirect.com/science/article/pii/0370157380900915.
- A. D. Linde and D. H. Lyth, “Axionic domain wall production during inflation,” Phys. Lett. B 246 (1990) 353–358.
- R. T. Co, L. J. Hall, and K. Harigaya, “Axion Kinetic Misalignment Mechanism,” Phys. Rev. Lett. 124 no. 25, (2020) 251802, arXiv:1910.14152 [hep-ph].
- K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder, “The Pressure of hot QCD up to g6 ln(1/g),” Phys. Rev. D 67 (2003) 105008, arXiv:hep-ph/0211321.
- H. Davoudiasl, R. Kitano, G. D. Kribs, H. Murayama, and P. J. Steinhardt, “Gravitational baryogenesis,” Phys. Rev. Lett. 93 (2004) 201301, arXiv:hep-ph/0403019.
- B. Spokoiny, “Deflationary universe scenario,” Phys. Lett. B 315 (1993) 40–45, arXiv:gr-qc/9306008.
- M. Joyce, “Electroweak Baryogenesis and the Expansion Rate of the Universe,” Phys. Rev. D 55 (1997) 1875–1878, arXiv:hep-ph/9606223.
- P. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field,” Phys. Rev. D 58 (1998) 023503, arXiv:astro-ph/9711102.
- R. T. Co, D. Dunsky, N. Fernandez, A. Ghalsasi, L. J. Hall, K. Harigaya, and J. Shelton, “Gravitational wave and CMB probes of axion kination,” JHEP 09 (2022) 116, arXiv:2108.09299 [hep-ph].
- Y. Gouttenoire, G. Servant, and P. Simakachorn, “Revealing the Primordial Irreducible Inflationary Gravitational-Wave Background with a Spinning Peccei-Quinn Axion,” arXiv:2108.10328 [hep-ph].
- Y. Gouttenoire, G. Servant, and P. Simakachorn, “Kination cosmology from scalar fields and gravitational-wave signatures,” arXiv:2111.01150 [hep-ph].
- D. Bettoni and J. Rubio, “Quintessential Affleck-Dine baryogenesis with non-minimal couplings,” Phys. Lett. B 784 (2018) 122–129, arXiv:1805.02669 [astro-ph.CO].
- A. D. Linde, “Relaxing the cosmological moduli problem,” Phys. Rev. D 53 (1996) R4129–R4132, arXiv:hep-th/9601083.
- A. Deur, V. Burkert, J. P. Chen, and W. Korsch, “Experimental determination of the QCD effective charge αg1(Q)subscript𝛼subscript𝑔1𝑄\alpha_{g_{1}}(Q)italic_α start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_Q ),” Particles 5 (2022) 171, arXiv:2205.01169 [hep-ph].
- J. Huston, K. Rabbertz, and G. Zanderighi, “Quantum Chromodynamics,” arXiv:2312.14015 [hep-ph].
- O. Wantz and E. P. S. Shellard, “Axion Cosmology Revisited,” Phys. Rev. D 82 (2010) 123508, arXiv:0910.1066 [astro-ph.CO].
- A. D. Linde, “Inflation and Axion Cosmology,” Phys. Lett. B 201 (1988) 437–439.
- F. Wilczek, “A Model of anthropic reasoning, addressing the dark to ordinary matter coincidence,” arXiv:hep-ph/0408167.
- M. Tegmark, A. Aguirre, M. Rees, and F. Wilczek, “Dimensionless constants, cosmology and other dark matters,” Phys. Rev. D 73 (2006) 023505, arXiv:astro-ph/0511774.
- M. P. Hertzberg, M. Tegmark, and F. Wilczek, “Axion Cosmology and the Energy Scale of Inflation,” Phys. Rev. D 78 (2008) 083507, arXiv:0807.1726 [astro-ph].
- S. Borsanyi et al., “Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,” Nature 539 no. 7627, (2016) 69–71, arXiv:1606.07494 [hep-lat].
- P. Arias, N. Bernal, D. Karamitros, C. Maldonado, L. Roszkowski, and M. Venegas, “New opportunities for axion dark matter searches in nonstandard cosmological models,” JCAP 11 (2021) 003, arXiv:2107.13588 [hep-ph].
- P. Arias, N. Bernal, J. K. Osiński, and L. Roszkowski, “Dark matter axions in the early universe with a period of increasing temperature,” JCAP 05 (2023) 028, arXiv:2207.07677 [hep-ph].
- J. E. Kim, “Weak-interaction singlet and strong CPCP\mathrm{CP}roman_CP invariance,” Phys. Rev. Lett. 43 (Jul, 1979) 103–107. https://link.aps.org/doi/10.1103/PhysRevLett.43.103.
- M. Shifman, A. Vainshtein, and V. Zakharov, “Can confinement ensure natural cp invariance of strong interactions?,” Nuclear Physics B 166 no. 3, (1980) 493–506. https://www.sciencedirect.com/science/article/pii/0550321380902096.
- A. R. Zhitnitsky, “On Possible Suppression of the Axion Hadron Interactions. (In Russian),” Sov. J. Nucl. Phys. 31 (1980) 260.
- M. Dine, W. Fischler, and M. Srednicki, “A simple solution to the strong cp problem with a harmless axion,” Physics Letters B 104 no. 3, (1981) 199–202. https://www.sciencedirect.com/science/article/pii/0370269381905906.
- R. R. Volkas, “VISHν𝜈\nuitalic_ν: Flavour-Variant DFSZ Axion Model for Inflation, Neutrino Masses, Dark Matter, and Baryogenesis,” LHEP 2023 (2023) 358.