Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Distance Guided Alignment Training for Large Language Models (2404.06390v2)

Published 9 Apr 2024 in cs.CL

Abstract: Ensuring alignment with human preferences is a crucial characteristic of LLMs. Presently, the primary alignment methods, RLHF and DPO, require extensive human annotation, which is expensive despite their efficacy. The significant expenses associated with current alignment techniques motivate researchers to investigate the development of annotation-free alignment training methods. In pursuit of improved alignment without relying on external annotation, we introduce Latent Distance Guided Alignment Training (LD-Align). This approach seeks to align the model with a high-quality supervised fine-tune dataset using guidance from a latent space. The latent space is generated through sample reconstruction, akin to auto-encoding. Consequently, we utilize the distance between sample pairs in the latent space to guide DPO-based alignment training. Extensive experimentation and evaluation show the efficacy of our proposed method in achieving notable alignment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Haotian Luo (8 papers)

Summary

We haven't generated a summary for this paper yet.