Emergent Modified Gravity (2404.06375v1)
Abstract: A complete canonical formulation of general covariance makes it possible to construct new modified theories of gravity that are not of higher-curvature form, as shown here in a spherically symmetric setting. The usual uniqueness theorems are evaded by using a crucial and novel ingredient, allowing for fundamental fields of gravity distinct from an emergent space-time metric that provides a geometrical structure to all solutions. As specific examples, there are new expansion-shear couplings in cosmological models, a form of modified Newtonian dynamics (MOND) can appear in a space-time covariant theory without introducing extra fields, and related effects help to make effective models of canonical quantum gravity fully consistent with general covariance.
- P. A. M. Dirac, The theory of gravitation in Hamiltonian form, Proc. Roy. Soc. A 246 (1958) 333–343
- J. Katz, Les crochets de Poisson des contraintes du champ gravitationne, Comptes Rendus Acad. Sci. Paris 254 (1962) 1386–1387
- The Dynamics of General Relativity, In L. Witten, editor, Gravitation: An Introduction to Current Research, Wiley, New York, 1962, Reprinted in [37]
- Geometrodynamics Regained, Ann. Phys. (New York) 96 (1976) 88–135
- A new type of large-scale signature change in emergent modified gravity, Phys. Rev. D 109 (2024) 084001, [arXiv:2312.09217]
- An effective model for the quantum Schwarzschild black hole, Phys. Lett. B 829 (2022) 137075, [arXiv:2112.12110]
- Nonsingular spherically symmetric black-hole model with holonomy corrections, Phys. Rev. D 106 (2022) 024035, [arXiv:2205.02098]
- A Lie-Rinehart algebra in general relativity, [arXiv:2201.02883]
- Covariance in models of loop quantum gravity: Spherical symmetry, Phys. Rev. D 92 (2015) 045043, [arXiv:1507.00329]
- M. Bojowald and S. Brahma, Covariance in models of loop quantum gravity: Gowdy systems, Phys. Rev. D 92 (2015) 065002, [arXiv:1507.00679]
- Effective line elements and black-hole models in canonical (loop) quantum gravity, Phys. Rev. D 98 (2018) 046015, [arXiv:1803.01119]
- A. Alonso-Bardají and D. Brizuela, Holonomy and inverse-triad corrections in spherical models coupled to matter, Eur. Phys. J. C 81 (2021) 283, [arXiv:2010.14437]
- A. Alonso-Bardají and D. Brizuela, Anomaly-free deformations of spherical general relativity coupled to matter, Phys. Rev. D 104 (2021) 084064, [arXiv:2106.07595]
- R. Tibrewala, Inhomogeneities, loop quantum gravity corrections, constraint algebra and general covariance, Class. Quantum Grav. 31 (2014) 055010, [arXiv:1311.1297]
- M. Bojowald and R. Swiderski, Spherically Symmetric Quantum Geometry: Hamiltonian Constraint, Class. Quantum Grav. 23 (2006) 2129–2154, [gr-qc/0511108]
- M. Bojowald and E. I. Duque, Emergent modified gravity: Covariance regained, Phys. Rev. D 108 (2023) 084066, [arXiv:2310.06798]
- V. Mukhanov and R. Brandenberger, A nonsingular universe, Phys. Rev. Lett. 68 (1992) 1969–1972
- M. Bojowald, Non-covariance of “covariant polymerization” in models of loop quantum gravity, Phys. Rev. D 103 (2021) 126025, [arXiv:2102.11130]
- A covariant polymerized scalar field in loop quantum gravity, Universe 8 (2022) 526, [arXiv:2102.09501]
- J. D. Reyes, Spherically Symmetric Loop Quantum Gravity: Connections to 2-Dimensional Models and Applications to Gravitational Collapse, PhD thesis, The Pennsylvania State University, 2009
- G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363–384
- T. Kobayashi, Horndeski theory and beyond: a review, Rept. Prog. Phys. 82 (2019) 086901, [arXiv:1901.07183]
- D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034, [arXiv:1510.06930]
- K. Takahashi and T. Kobayashi, Generalized 2D dilaton gravity and KGB, Class. Quant. Grav. 36 (2019) 095003, [arXiv:1812.08847]
- M. Bojowald and G. M. Paily, Deformed General Relativity and Effective Actions from Loop Quantum Gravity, Phys. Rev. D 86 (2012) 104018, [arXiv:1112.1899]
- P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008, [arXiv:0901.3775]
- M. Bojowald, The BKL scenario, infrared renormalization, and quantum cosmology, JCAP 01 (2019) 026, [arXiv:1810.00238]
- M. Bojowald and E. I. Duque, MONDified gravity, Phys. Lett. B 847 (2023) 138279, [arXiv:2310.19894]
- M. Milgrom, A modification of the Newtonian dynamics-Implications for galaxies, Ap. J. 270 (1983) 371–383
- S. S. McGaugh and W. De Blok, Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence, Ap. J. 499 (1998) 66
- Quasiclassical solutions for static quantum black holes, Phys. Rev. D 109 (2024) 024006, [arXiv:2012.07649]
- J. D. Bekenstein, Relativistic gravitation theory for the modified Newtonian dynamics paradigm, Phys. Rev. D 70 (2004) 083509, [astro-ph/0403694]
- J. W. Moffat, Scalar–tensor–vector gravity theory, JCAP 2006 (2006) 004, [gr-qc/0506021]
- A. Alonso-Bardají and D. Brizuela, Spacetime geometry from canonical spherical gravity, [arXiv:2310.12951]
- M. Bojowald and E. I. Duque, Emergent modified gravity coupled to scalar matter, Phys. Rev. D 109 (2024) 084006, [arXiv:2311.10693]
- E. I. Duque, Emergent modified gravity: The perfect fluid and gravitational collapse, Phys. Rev. D 109 (2024) 044014, [arXiv:2311.08616]
- The Dynamics of General Relativity, Gen. Rel. Grav. 40 (2008) 1997–2027