Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Message Passing Variational Autoregressive Network for Solving Intractable Ising Models (2404.06225v1)

Published 9 Apr 2024 in cond-mat.stat-mech, cond-mat.dis-nn, and cs.LG

Abstract: Many deep neural networks have been used to solve Ising models, including autoregressive neural networks, convolutional neural networks, recurrent neural networks, and graph neural networks. Learning a probability distribution of energy configuration or finding the ground states of a disordered, fully connected Ising model is essential for statistical mechanics and NP-hard problems. Despite tremendous efforts, a neural network architecture with the ability to high-accurately solve these fully connected and extremely intractable problems on larger systems is still lacking. Here we propose a variational autoregressive architecture with a message passing mechanism, which can effectively utilize the interactions between spin variables. The new network trained under an annealing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians, especially for larger spin systems at low temperatures. The advantages also come from the great mitigation of mode collapse during the training process of deep neural networks. Considering these extremely difficult problems to be solved, our method extends the current computational limits of unsupervised neural networks to solve combinatorial optimization problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A. Tanaka, A. Tomiya, and K. Hashimoto, Deep Learning and Physics (Springer Singapore, 2023).
  2. D. Wu, L. Wang, and P. Zhang, Solving statistical mechanics using variational autoregressive networks, Phys. Rev. Lett. 122, 080602 (2019).
  3. M. Gabrié, G. M. Rotskoff, and E. Vanden-Eijnden, Adaptive monte carlo augmented with normalizing flows, Proceedings of the National Academy of Sciences 119, e2109420119 (2022).
  4. D. Wu, R. Rossi, and G. Carleo, Unbiased monte carlo cluster updates with autoregressive neural networks, Phys. Rev. Res. 3, L042024 (2021).
  5. A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, Pixel recurrent neural networks, in Proceedings of The 33rd International Conference on Machine Learning, Vol. 48 (2016) pp. 1747–1756.
  6. Z. Li, Q. Chen, and V. Koltun, Combinatorial optimization with graph convolutional networks and guided tree search, in Neural Information Processing Systems (2018).
  7. C. K. Joshi, T. Laurent, and X. Bresson, An efficient graph convolutional network technique for the travelling salesman problem, ArXiv abs/1906.01227 (2019).
  8. M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber, Combinatorial optimization with physics-inspired graph neural networks, Nature Machine Intelligence 4, 367 (2021).
  9. H. Larochelle and I. Murray, The neural autoregressive distribution estimator., Journal of Machine Learning Research - Proceedings Track 15, 29 (2011).
  10. E. M. Inack, S. Morawetz, and R. G. Melko, Neural annealing and visualization of autoregressive neural networks in the newman-moore model, Condensed Matter 7, 10.3390/condmat7020038 (2022).
  11. S. Kirkpatrick, C. D. Gelatt, and A. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
  12. D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis 30, 129 (2011).
  13. M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Advances in Neural Information Processing Systems, Vol. 29 (2016).
  14. T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, in International Conference on Learning Representations (2017).
  15. L. Andrew, Ising formulations of many np problems, Frontiers in Physics 2, 5 (2013).
  16. S. Boettcher, Inability of a graph neural network heuristic to outperform greedy algorithms in solving combinatorial optimization problems, Nature Machine Intelligence , 2522 (2022).
  17. M. C. Angelini and F. Ricci-Tersenghi, Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set, Nature Machine Intelligence , 29 (2022).
  18. K. Mills, P. Ronagh, and I. Tamblyn, Finding the ground state of spin hamiltonians with reinforcement learning, Nature Machine Intelligence 2, 509 (2020).
  19. N. Mohseni, P. L. McMahon, and T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems, Nature Reviews Physics 4, 363 (2022).
  20. E. Tiunov, A. Ulanov, and A. Lvovsky, Annealing by simulating the coherent ising machine, Optics Express 27, 10288 (2019).
  21. H. Oshiyama and M. Ohzeki, Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization, Scientific Reports 12 (2022).
  22. F. Barahona, On the computational complexity of ising spin glass models, Journal of Physics A: Mathematical and General 15, 3241 (1982).
  23. A. Coja-Oghlan and C. Efthymiou, On independent sets in random graphs, Random Structures & Algorithms 47, 436 (2015).
  24. D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35, 1792 (1975).
  25. S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal of Physics F: Metal Physics 5, 965 (1975).
  26. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).
  27. Y. Bengio, A. Lodi, and A. Prouvost, Machine learning for combinatorial optimization: A methodological tour d’horizon, European Journal of Operational Research 290, 405 (2021).
  28. W. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large graphs, in Advances in Neural Information Processing Systems, Vol. 30 (2017).
  29. R. H. Swendsen and J.-S. Wang, Replica monte carlo simulation of spin-glasses, Physical review letters 57, 2607 (1986).
  30. D. Panchenko, The sherrington-kirkpatrick model: An overview, Journal of Statistical Physics 149, 362 (2012).
  31. D. Panchenko, The Sherrington-Kirkpatrick Model (Springer New York, 2013).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets