Entropy numbers of finite-dimensional Lorentz space embeddings (2404.06058v2)
Abstract: The sequence of entropy numbers quantifies the degree of compactness of a linear operator acting between quasi-Banach spaces. We determine the asymptotic behavior of entropy numbers in the case of natural embeddings between finite-dimensional Lorentz spaces $\ell_{p,q}n$ in all regimes; our results are sharp up to constants. This generalizes classical results obtained by Sch\"utt (in the case of Banach spaces) and Edmunds and Triebel, K\"uhn, as well as Gu\'edon and Litvak (in the case of quasi-Banach spaces) for entropy numbers of identities between finte-dimensional Lebesgue sequence spaces $\ell_pn$. We employ techniques such as interpolation, volume comparison as well as techniques from sparse approximation and combinatorial arguments. Further, we characterize entropy numbers of embeddings between finite-dimensional symmetric quasi-Banach spaces in terms of best $s$-term approximation numbers.
- F. Albiac and N. J. Kalton. Topics in Banach space theory, volume 233 of Graduate Texts in Mathematics. Springer, New York, 2006.
- T. Aoki. Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo, 18:588–594, 1942.
- The Lorentz sequence spaces d(w,p)𝑑𝑤𝑝d(w,p)italic_d ( italic_w , italic_p ) where w𝑤witalic_w is increasing. Math. Ann., 282(2):259–266, 1988.
- S. V. Astashkin. On lattice properties of the Lorentz spaces Lp,qsubscript𝐿𝑝𝑞L_{p,q}italic_L start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT. Math. Notes, 113(1):10–17, 2023.
- Absolute and monotonic norms. Numer. Math., 3:257–264, 1961.
- C. Bennett and R. Sharpley. Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.
- J. Bergh and J. Löfström. Interpolation spaces. An introduction, volume No. 223 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1976.
- Approximation of zonoids by zonotopes. Acta Math., 162(1-2):73–141, 1989.
- A. Calderón. Intermediate spaces and interpolation, the complex method. Studia Math., 24(2):113–190, 1964.
- Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52(2):489–509, 2006.
- E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.
- B. Carl. Entropy numbers, s-numbers, and eigenvalue problems. J. Funct. Anal., 41:290–306, 1981.
- B. Carl and I. Stephani. Entropy, compactness and the approximation of operators, volume 98 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.
- M. Ciesielski and G. Lewicki. Sequence Lorentz spaces and their geometric structure. J. Geom. Anal., 29(3):1929–1952, 2019.
- F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc. (N.S.), 39(1):1–49, 2002.
- A. Doležalová and J. Vybíral. On the volume of unit balls of finite-dimensional Lorentz spaces. J. Approx. Theory, 255:105407, 20, 2020.
- D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.
- Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces. Studia Math., 128(1):71–102, 1998.
- Entropy numbers and interpolation. Math. Ann., 351(4):963–977, 2011.
- D. E. Edmunds and H. Triebel. Function spaces, entropy numbers, differential operators, volume 120 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.
- The Gelfand widths of ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-balls for 0<p≤10𝑝10<p\leq 10 < italic_p ≤ 1. J. Complexity, 26(6):629–640, 2010.
- S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013.
- D. J. Fresen. Random Euclidean embeddings in finite-dimensional Lorentz spaces. Studia Math., 269(2):121–138, 2023.
- Geometric and probabilistic estimates for entropy and approximation numbers of operators. J. Approx. Theory, 49:219–239, 1987.
- O. Guédon and A. E. Litvak. Euclidean projections of a p𝑝pitalic_p-convex body. In Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., pages 95–108. Springer, Berlin, 2000.
- Carl’s inequality for quasi-Banach spaces. J. Funct. Anal., 271(8):2293–2307, 2016.
- Entropy numbers of embeddings of Schatten classes. J. Funct. Anal., 273(10):3241–3261, 2017.
- A probabilistic approach to Lorentz balls. arXiv e-prints, arXiv:2303.04728 [math.FA], 2023.
- T. Kaewtem. Entropy numbers in γ𝛾\gammaitalic_γ-Banach spaces. Math. Nachr., 290(17-18):2879–2889, 2017.
- T. Kaewtem and Y. Netrusov. Entropy numbers of diagonal operators on Orlicz sequence spaces. Math. Nachr., 294(7):1350–1373, 2021.
- A. Kamińska and L. Maligranda. Order convexity and concavity of Lorentz spaces Λp,w, 0<p<∞subscriptΛ𝑝𝑤 0𝑝\Lambda_{p,w},\,0<p<\inftyroman_Λ start_POSTSUBSCRIPT italic_p , italic_w end_POSTSUBSCRIPT , 0 < italic_p < ∞. Studia Math., 160(3):267–286, 2004.
- A. N. Kolmogorov. On certain asymptotic characteristics of completely bounded metric spaces. Dokl. Akad. Nauk SSSR, 108:385–388, 1956.
- H. König. Eigenvalue distribution of compact operators, volume 16 of Oper. Theory: Adv. Appl. Birkhäuser, Cham, 1986.
- M. Kossaczká and J. Vybíral. Entropy numbers of finite-dimensional embeddings. Expo. Math., 38(3):319–336, 2020.
- T. Kühn. A lower estimate for entropy numbers. J. Approx. Theory, 110(1):120–124, 2001.
- J. Lang and A. Nekvinda. Embeddings between Lorentz sequence spaces are strictly but not finitely strictly singular. Studia Math., 272(1):35–57, 2023.
- M. Ledoux and M. Talagrand. Probability in Banach spaces. Isoperimetry and processes, volume 23 of Ergeb. Math. Grenzgeb., 3. Folge. Berlin etc.: Springer-Verlag, 1991.
- M. A. Lifshits and W. Linde. Approximation and entropy numbers of Volterra operators with application to Brownian motion, volume 745 of Mem. Am. Math. Soc. Providence, RI: American Mathematical Society (AMS), 2002.
- G. G. Lorentz. On the theory of spaces ΛΛ\Lambdaroman_Λ. Pac. J. Math., 1:411–429, 1951.
- S. Mayer and T. Ullrich. Entropy numbers of finite dimensional mixed-norm balls and function space embeddings with small mixed smoothness. Constr. Approx., 53(2):249–279, 2021.
- E. Novak and H. Woźniakowski. Tractability of multivariate problems. Vol. 1: Linear information, volume 6 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2008.
- A. Pietsch. Operator ideals. Mathematische Monographien, Bd. 16. Berlin: VEB Deutscher Verlag der Wissenschaften. 451 p. M 83.00 (1978)., 1978.
- J. Prochno. Embeddings of Orlicz-Lorentz spaces into L1subscript𝐿1L_{1}italic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. St. Petersbg. Math. J., 32(1):59–70, 2021.
- S. Reisner. On the duals of Lorentz function and sequence spaces. Indiana Univ. Math. J., 31:65–72, 1982.
- S. Rolewicz. On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl. III., 5:471–473, XL, 1957.
- C. Schütt. Entropy numbers of diagonal operators between symmetric Banach spaces. J. Approx. Theory, 40(2):121–128, 1984.
- C. Schütt. Lorentz spaces that are isomorphic to subspaces of L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. Trans. Am. Math. Soc., 314(1):583–595, 1989.
- M. Talagrand. The generic chaining. Upper and lower bounds of stochastic processes. Springer Monogr. Math. Berlin: Springer, 2005.
- V. N. Temlyakov. An inequality for the entropy numbers and its application. J. Approx. Theory, 173:110–121, 2013.
- Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Trans. Inf. Theory, 47(6):2516–2532, 2001.